OBDD Representation of Intersection Graphs

SUMMARY Ordered Binary Decision Diagrams (OBDDs for short) are popular dynamic data structures for Boolean functions. In some modern applications, we have to handle such huge graphs that the usual explicit representations by adjacency lists or adjacency matrices are infeasible. To deal with such huge graphs, OBDD-based graph representations and algorithms have been investigated. Although the size of OBDD representations may be large in general, it is known to be small for some special classes of graphs. In this paper, we show upper bounds and lower bounds of the size of OBDDs representing some intersection graphs such as bipartite permutation graphs, biconvex graphs, convex graphs, (2-directional) orthogonal ray graphs, and permutation graphs.

[1]  Gen-Huey Chen,et al.  Efficient Parallel Algorithms for Doubly Convex-Bipartite Graphs , 1995, Theor. Comput. Sci..

[2]  S. Benzer ON THE TOPOLOGY OF THE GENETIC FINE STRUCTURE. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Cyril Gavoille,et al.  Localized and compact data-structure for comparability graphs , 2005, Discret. Math..

[4]  Marc Gillé,et al.  OBDD-Based Representation of Interval Graphs , 2013, WG.

[5]  José A. Soto,et al.  Jump Number of Two-Directional Orthogonal Ray Graphs , 2011, IPCO.

[6]  Martin Charles Golumbic,et al.  Perfect Elimination and Chordal Bipartite Graphs , 1978, J. Graph Theory.

[7]  Beate Bollig,et al.  Improving the Variable Ordering of OBDDs Is NP-Complete , 1996, IEEE Trans. Computers.

[8]  F. Glover Maximum matching in a convex bipartite graph , 1967 .

[9]  Asahi Takaoka,et al.  On Two Problems of Nano-PLA Design , 2011, IEICE Trans. Inf. Syst..

[10]  Yota Otachi,et al.  Relationships between the class of unit grid intersection graphs and other classes of bipartite graphs , 2007, Discret. Appl. Math..

[11]  Peter C. Fishburn,et al.  Partial orders of dimension 2 , 1972, Networks.

[12]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[13]  Philipp Woelfel,et al.  Representation of graphs by OBDDs , 2005, Discret. Appl. Math..

[14]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[15]  Beate Bollig On symbolic OBDD-based algorithms for the minimum spanning tree problem , 2012, Theor. Comput. Sci..

[16]  Proc Natl,et al.  Molecular Biology Through Discovery Companion to Benzer (1959) On the Topology of the Genetic Fine Structure , 2012 .

[17]  Ingo Wegener,et al.  Branching Programs and Binary Decision Diagrams , 1987 .

[18]  Jeremy P. Spinrad,et al.  Nonredundant 1's in Gamma-Free Matrices , 1995, SIAM J. Discret. Math..

[19]  Moni Naor,et al.  Implicit representation of graphs , 1992, STOC '88.

[20]  Klaus Meer,et al.  On the OBDD size for graphs of bounded tree- and clique-width , 2009, Discret. Math..

[21]  Jeremy P. Spinrad,et al.  Bipartite permutation graphs , 1987, Discret. Appl. Math..

[22]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[23]  Ilan Newman,et al.  On grid intersection graphs , 1991, Discret. Math..

[24]  Amir Pnueli,et al.  Permutation Graphs and Transitive Graphs , 1972, JACM.

[25]  Ingo Wegener,et al.  NC-Algorithms for Operations on Binary Decision Diagrams , 1993, Parallel Process. Lett..

[26]  Jeremy P. Spinrad,et al.  Efficient graph representations , 2003, Fields Institute monographs.

[27]  Satoshi Tayu,et al.  On orthogonal ray graphs , 2010, Discret. Appl. Math..

[28]  I. Wegener Branching Programs and Binary Deci-sion Diagrams-Theory and Applications , 1987 .

[29]  Chen-Shang Lin,et al.  On the OBDD-Representation of General Boolean Functions , 1992, IEEE Trans. Computers.

[30]  Yota Otachi,et al.  Random generation and enumeration of bipartite permutation graphs , 2009, J. Discrete Algorithms.

[31]  Maurizio Talamo,et al.  Representing graphs implicitly using almost optimal space , 2001, Discret. Appl. Math..

[32]  Cyril Gavoille,et al.  Optimal Distance Labeling for Interval Graphs and Related Graph Families , 2008, SIAM J. Discret. Math..