Function projective synchronization for four scroll attractor by nonlinear control

This paper presents a function projective synchronization of two identical four scroll attractor, when the parameters of the drive system are known and fully unknown of the response system. Based on Lyapunov stability theory a control law is designed to make the states of two identical four scroll attractor asymptotically synchronized. This method is efficient and easy to implement. The numerical simulations are presented to show the effectiveness of the proposed schemes.

[1]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[2]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[3]  H. An,et al.  The function cascade synchronization method and applications , 2008 .

[4]  H. Abarbanel,et al.  Generalized synchronization of chaos: The auxiliary system approach. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Yong Chen,et al.  FUNCTION PROJECTIVE SYNCHRONIZATION BETWEEN TWO IDENTICAL CHAOTIC SYSTEMS , 2007 .

[6]  Z. Ge,et al.  The generalized synchronization of a Quantum-CNN chaotic oscillator with different order systems , 2008 .

[7]  Chuandong Li,et al.  Chaotic lag synchronization of coupled time-delayed systems and its applications in secure communication , 2004 .

[8]  GUANRONG CHEN,et al.  Can a Three-Dimensional Smooth Autonomous Quadratic Chaotic System Generate a Single Four-scroll Attractor? , 2004, Int. J. Bifurc. Chaos.

[9]  Z. Guan,et al.  Generalized synchronization of continuous chaotic system , 2006 .

[10]  Guanrong Chen,et al.  The Compound Structure of Chen's Attractor , 2002, Int. J. Bifurc. Chaos.

[11]  Guanrong Chen,et al.  Dynamical Analysis of a New Chaotic Attractor , 2002, Int. J. Bifurc. Chaos.

[12]  Guohui Li Modified projective synchronization of chaotic system , 2007 .

[13]  Yong Chen,et al.  The function cascade synchronization approach with uncertain parameters or not for hyperchaotic systems , 2008, Appl. Math. Comput..

[14]  Parlitz,et al.  Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. , 1996, Physical review letters.

[15]  Luo Run-zi,et al.  Adaptive function projective synchronization of unified chaotic systems with uncertain parameters , 2009 .

[16]  Daizhan Cheng,et al.  A New Chaotic System and Beyond: the Generalized Lorenz-like System , 2004, Int. J. Bifurc. Chaos.

[17]  Guohui Li,et al.  Generalized synchronization of chaos based on suitable separation , 2009 .

[18]  Louis M. Pecora,et al.  Synchronizing chaotic systems , 1993, Optics & Photonics.

[19]  Ming-Chung Ho,et al.  Phase and anti-phase synchronization of two chaotic systems by using active control , 2002 .

[20]  Guohui Li,et al.  Generalized projective synchronization between Lorenz system and Chen’s system , 2007 .

[21]  Zengrong Liu,et al.  From lag synchronization to pattern formation in networked dynamics , 2007 .

[22]  Luo Runzi,et al.  Adaptive function project synchronization of Rössler hyperchaotic system with uncertain parameters , 2008 .

[23]  Guohui Li,et al.  Generalized projective synchronization of two chaotic systems by using active control , 2006 .

[24]  Hongyue Du,et al.  Function projective synchronization of different chaotic systems with uncertain parameters , 2008 .

[25]  Zhenya Yan,et al.  A nonlinear control scheme to anticipated and complete synchronization in discrete-time chaotic (hyperchaotic) systems , 2005 .

[26]  S. S. Yang,et al.  Generalized Synchronization in Chaotic Systems , 1998 .

[27]  Louis M Pecora,et al.  Synchronization of chaotic systems. , 2015, Chaos.

[28]  Ronnie Mainieri,et al.  Projective Synchronization In Three-Dimensional Chaotic Systems , 1999 .

[29]  L. Tsimring,et al.  Generalized synchronization of chaos in directionally coupled chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.