Tensely strained GeSn alloys as optical gain media
暂无分享,去创建一个
Gregor Mussler | Stephan Wirths | Zoran Ikonic | Detlev Grützmacher | Dan Buca | Toma Stoica | Stefano Chiussi | A. T. Tiedemann | S. Mantl | B. Holländer | J. Hartmann | S. Mantl | G. Mussler | D. Grützmacher | S. Wirths | A. Benedetti | D. Buca | U. Breuer | S. Chiussi | A. Tiedemann | T. Stoica | Bernhard Holländer | J. M. Hartmann | Uwe Breuer | A. Benedetti | Z. Ikonić
[1] B. Holländer,et al. Epitaxial Growth of Ge1-xSnx by Reduced Pressure CVD Using SnCl4 and Ge2H6 , 2013 .
[2] David J. Smith,et al. Compositional dependence of the absorption edge and dark currents in Ge1−x−ySixSny/Ge(100) photodetectors grown via ultra-low-temperature epitaxy of Ge4H10, Si4H10, and SnD4 , 2012 .
[3] B. Holländer,et al. Strain tensors in layer systems by precision ion channeling measurements , 2010 .
[4] Dan Buca,et al. Fast time response from Si–SiGe undulating layer superlattices , 2002 .
[5] David J. Thomson,et al. Silicon optical modulators , 2010 .
[6] Wilfried Vandervorst,et al. Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition , 2011 .
[7] S. Cloutier,et al. Optical gain and stimulated emission in periodic nanopatterned crystalline silicon , 2005, Nature materials.
[8] S. Chuang,et al. Theory of Optical Gain of ${\hbox {Ge--}}{\hbox {Si}}_{x}{\hbox {Ge}}_{y}{\hbox {Sn}}_{1-x-y}$ Quantum-Well Lasers , 2007, IEEE Journal of Quantum Electronics.
[9] Jason Taylor,et al. Intervalence band absorption in InP and related materials for optoelectronic device modeling , 2000 .
[10] Y. Lao,et al. Dielectric function model for p-type semiconductor inter-valence band transitions , 2011 .
[11] Shu-Wei Chang,et al. Strain-Balanced ${\rm Ge}_{z}{\rm Sn}_{1-z}\hbox{--}{\rm Si}_{x}{\rm Ge}_{y}{\rm Sn}_{1-x-y}$ Multiple-Quantum-Well Lasers , 2010, IEEE Journal of Quantum Electronics.
[12] John Kouvetakis,et al. Synthesis of ternary SiGeSn semiconductors on Si(100) via SnxGe1−x buffer layers , 2003 .
[13] Z. Ikonic,et al. Electronic properties calculation of Ge1 − x − ySixSny ternary alloy and nanostructure , 2012 .
[14] O. Richard,et al. Low-temperature Ge and GeSn Chemical Vapor Deposition using Ge2H6 , 2012 .
[15] K. Saraswat,et al. Theoretical Analysis of GeSn Alloys as a Gain Medium for a Si-Compatible Laser , 2013, IEEE Journal of Selected Topics in Quantum Electronics.
[16] Dan Buca,et al. Metal–germanium–metal ultrafast infrared detectors , 2002 .
[17] Jaros,et al. Simple analytic model for heterojunction band offsets. , 1988, Physical review. B, Condensed matter.
[18] Di Liang,et al. Recent progress in lasers on silicon , 2010 .
[19] L. Clavelier,et al. Epitaxial growth of Ge thick layers on nominal and 6° off Si(0 0 1); Ge surface passivation by Si , 2009 .
[20] Richard A. Soref,et al. Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure midinfrared laser , 2010 .
[21] Erratum: Eight-band k , 1992, Physical review. B, Condensed matter.
[22] S. Mantl,et al. Low temperature RPCVD epitaxial growth of Si1−xGex using Si2H6 and Ge2H6 , 2013 .
[23] Giuseppe Grosso,et al. Radiative recombination and optical gain spectra in biaxially strained n-type germanium , 2013 .
[24] Laurent Vivien,et al. Reduced pressure–chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection , 2004 .
[25] Bahram Jalali,et al. Demonstration of directly modulated silicon Raman laser. , 2005, Optics express.
[26] Weijun Fan,et al. Electronic band structure and effective mass parameters of Ge1-xSnx alloys , 2012 .
[27] Zoran Ikonic,et al. Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials , 2007 .
[28] Gregor Mussler,et al. Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys , 2013 .
[29] R. Kotlyar,et al. Bandgap engineering of group IV materials for complementary n and p tunneling field effect transistors , 2013 .
[30] M. Romagnoli,et al. An electrically pumped germanium laser. , 2012, Optics express.
[31] Yi-Chiau Huang,et al. Highly selective dry etching of germanium over germanium-tin (Ge(1-x)Sn(x)): a novel route for Ge(1-x)Sn(x) nanostructure fabrication. , 2013, Nano letters.
[32] B. Holländer,et al. Band engineering and growth of tensile strained Ge/(Si)GeSn heterostructures for tunnel field effect transistors , 2013 .
[33] Jérôme Faist,et al. Analysis of enhanced light emission from highly strained germanium microbridges , 2013, Nature Photonics.