Tensely strained GeSn alloys as optical gain media

This letter presents the epitaxial growth and characterization of a heterostructure for an electrically injected laser, based on a strained GeSn active well. The elastic strain within the GeSn well can be tuned from compressive to tensile by high quality large Sn content (Si)GeSn buffers. The optimum combination of tensile strain and Sn alloying softens the requirements upon indirect to direct bandgap transition. We theoretically discuss the strain-doping relation for maximum net gain in the GeSn active layer. Employing tensile strain of 0.5% enables reasonable high optical gain values for Ge0.94Sn0.06 and even without any n-type doping for Ge0.92Sn0.08.

[1]  B. Holländer,et al.  Epitaxial Growth of Ge1-xSnx by Reduced Pressure CVD Using SnCl4 and Ge2H6 , 2013 .

[2]  David J. Smith,et al.  Compositional dependence of the absorption edge and dark currents in Ge1−x−ySixSny/Ge(100) photodetectors grown via ultra-low-temperature epitaxy of Ge4H10, Si4H10, and SnD4 , 2012 .

[3]  B. Holländer,et al.  Strain tensors in layer systems by precision ion channeling measurements , 2010 .

[4]  Dan Buca,et al.  Fast time response from Si–SiGe undulating layer superlattices , 2002 .

[5]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[6]  Wilfried Vandervorst,et al.  Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition , 2011 .

[7]  S. Cloutier,et al.  Optical gain and stimulated emission in periodic nanopatterned crystalline silicon , 2005, Nature materials.

[8]  S. Chuang,et al.  Theory of Optical Gain of ${\hbox {Ge--}}{\hbox {Si}}_{x}{\hbox {Ge}}_{y}{\hbox {Sn}}_{1-x-y}$ Quantum-Well Lasers , 2007, IEEE Journal of Quantum Electronics.

[9]  Jason Taylor,et al.  Intervalence band absorption in InP and related materials for optoelectronic device modeling , 2000 .

[10]  Y. Lao,et al.  Dielectric function model for p-type semiconductor inter-valence band transitions , 2011 .

[11]  Shu-Wei Chang,et al.  Strain-Balanced ${\rm Ge}_{z}{\rm Sn}_{1-z}\hbox{--}{\rm Si}_{x}{\rm Ge}_{y}{\rm Sn}_{1-x-y}$ Multiple-Quantum-Well Lasers , 2010, IEEE Journal of Quantum Electronics.

[12]  John Kouvetakis,et al.  Synthesis of ternary SiGeSn semiconductors on Si(100) via SnxGe1−x buffer layers , 2003 .

[13]  Z. Ikonic,et al.  Electronic properties calculation of Ge1 − x − ySixSny ternary alloy and nanostructure , 2012 .

[14]  O. Richard,et al.  Low-temperature Ge and GeSn Chemical Vapor Deposition using Ge2H6 , 2012 .

[15]  K. Saraswat,et al.  Theoretical Analysis of GeSn Alloys as a Gain Medium for a Si-Compatible Laser , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  Dan Buca,et al.  Metal–germanium–metal ultrafast infrared detectors , 2002 .

[17]  Jaros,et al.  Simple analytic model for heterojunction band offsets. , 1988, Physical review. B, Condensed matter.

[18]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[19]  L. Clavelier,et al.  Epitaxial growth of Ge thick layers on nominal and 6° off Si(0 0 1); Ge surface passivation by Si , 2009 .

[20]  Richard A. Soref,et al.  Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure midinfrared laser , 2010 .

[21]  Erratum: Eight-band k , 1992, Physical review. B, Condensed matter.

[22]  S. Mantl,et al.  Low temperature RPCVD epitaxial growth of Si1−xGex using Si2H6 and Ge2H6 , 2013 .

[23]  Giuseppe Grosso,et al.  Radiative recombination and optical gain spectra in biaxially strained n-type germanium , 2013 .

[24]  Laurent Vivien,et al.  Reduced pressure–chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection , 2004 .

[25]  Bahram Jalali,et al.  Demonstration of directly modulated silicon Raman laser. , 2005, Optics express.

[26]  Weijun Fan,et al.  Electronic band structure and effective mass parameters of Ge1-xSnx alloys , 2012 .

[27]  Zoran Ikonic,et al.  Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials , 2007 .

[28]  Gregor Mussler,et al.  Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys , 2013 .

[29]  R. Kotlyar,et al.  Bandgap engineering of group IV materials for complementary n and p tunneling field effect transistors , 2013 .

[30]  M. Romagnoli,et al.  An electrically pumped germanium laser. , 2012, Optics express.

[31]  Yi-Chiau Huang,et al.  Highly selective dry etching of germanium over germanium-tin (Ge(1-x)Sn(x)): a novel route for Ge(1-x)Sn(x) nanostructure fabrication. , 2013, Nano letters.

[32]  B. Holländer,et al.  Band engineering and growth of tensile strained Ge/(Si)GeSn heterostructures for tunnel field effect transistors , 2013 .

[33]  Jérôme Faist,et al.  Analysis of enhanced light emission from highly strained germanium microbridges , 2013, Nature Photonics.