A sequence of series for the Lambert W function
暂无分享,去创建一个
Robert M. Corless | Donald E. Knuth | David J. Jeffrey | D. Knuth | Robert M Corless | D. Jeffrey | D. J. Jeffrey
[1] D. Knuth,et al. A recurrence related to trees , 1989 .
[2] Donald E. Knuth. Two notes on notation , 1992 .
[3] H. A. Lauwerier,et al. The asymptotic expansion of the statistical distribution of N. V. Smirnov , 1962 .
[4] Robert M. Corless,et al. The unwinding number , 1996, SIGS.
[5] S. Orszag,et al. Advanced Mathematical Methods For Scientists And Engineers , 1979 .
[6] Donald Ervin Knuth,et al. The Art of Computer Programming, 2nd Ed. (Addison-Wesley Series in Computer Science and Information , 1978 .
[7] Andrew Russell Forsyth. Theory of functions of a complex variable , 1918 .
[8] Gilbert Labelle. Sur l'Inversion et l'Iteration Continue des Séries Formelles , 1980, Eur. J. Comb..
[9] F D Murnaghan. Airey's Converging Factor. , 1972, Proceedings of the National Academy of Sciences of the United States of America.
[10] W. Burnside. Theory of Functions of a Complex Variable , 1893, Nature.
[11] Robert M Corless,et al. Sur l'inversion de yαey au moyen des nombres de Stirling associés , 1995 .
[12] J. Borwein,et al. Emerging Tools for Experimental Mathematics , 1999 .
[13] G. Marsaglia,et al. A new derivation of Stirling's approximation of n ! , 1990 .
[14] Bruno Salvy. Fast Computation of Some Asymptotic Functional Inverses , 1994, J. Symb. Comput..