Dark soliton dynamics and interactions in dynamically photo-induced lattices: interaction with a continuous wave

The dynamics of dark spatial soliton beams and their interactions under the presence of a continuous wave (CW), which dynamically induces a photonic lattice, are investigated. It is shown that appropriate selections of the characteristic parameters of the CW result in different soliton propagation and interaction scenarios, suggesting a reconfigurable soliton control mechanism. Our analytical approach, based on the variational perturbation method, provides a dynamical system for the dark soliton evolution parameters. Analytical results are shown in good agreement with direct numerical simulations.

[1]  Kivshar,et al.  Dark solitons in discrete lattices. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Peter Schmelcher,et al.  Lagrangian approach to the dynamics of dark matter-wave solitons (6 pages) , 2005 .

[3]  Yuri S. Kivshar,et al.  Optical Solitons: From Fibers to Photonic Crystals , 2003 .

[4]  Yang,et al.  Perturbation-induced dynamics of dark solitons. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  R. Morandotti,et al.  Self-focusing and defocusing in waveguide arrays. , 2001, Physical review letters.

[6]  Kyriakos Hizanidis,et al.  Continuous-wave-controlled steering of spatial solitons , 2004 .

[7]  Konotop,et al.  Direct perturbation theory for dark solitons. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  N. Doran,et al.  Multiple dark soliton solutions of the nonlinear Schrödinger equation , 1985 .

[9]  Yuji Kodama,et al.  Solitons in optical communications , 1995 .

[10]  Tal Carmon,et al.  Observation of discrete solitons in optically induced real time waveguide arrays. , 2003, Physical review letters.

[11]  Mordechai Segev,et al.  Discrete solitons in photorefractive optically induced photonic lattices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  R. Morandotti,et al.  Gap solitons in waveguide arrays. , 2004, Physical review letters.

[13]  Yuri S. Kivshar,et al.  Lagrangian approach for dark solitons , 1995 .

[14]  D. Frantzeskakis,et al.  Dark solitons in discrete lattices: saturable versus cubic nonlinearities. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Volodymyr M Lashkin Perturbation theory for dark solitons: inverse scattering transform approach and radiative effects. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  E Bourkoff,et al.  Interactions between dark solitons. , 1989, Optics letters.

[17]  Mordechai Segev,et al.  Spatial photonics in nonlinear waveguide arrays. , 2005, Optics express.

[18]  Kyriakos Hizanidis,et al.  Optimal multidimensional solitary wave steering , 2005 .

[19]  Yuri S. Kivshar,et al.  Spatial optical solitons in waveguide arrays , 2003 .

[20]  Yuri S. Kivshar,et al.  Dark optical solitons: physics and applications , 1998 .

[21]  V. Konotop,et al.  Stationary dark localized modes: discrete nonlinear Schrödinger equations. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  K. Hizanidis,et al.  Continuous wave-controlled shape and chirp oscillations of optical solitons , 2004 .