Dualities between Entropy Functions and Network Codes

This paper provides new dualities between entropy functions and network codes. These duality results give an alternative proof of the insufficiency of linear (and abelian) network codes, and demonstrate the utility of non-Shannon inequalities to tighten outer bounds on network coding capacity regions.

[1]  Zhen Zhang,et al.  The Capacity Region for Multi-source Multi-sink Network Coding , 2007, 2007 IEEE International Symposium on Information Theory.

[2]  Alex J. Grant,et al.  Entropy Vectors and Network Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[3]  T. Chan,et al.  Capacity bounds for secure network coding , 2008, 2008 Australian Communications Theory Workshop.

[4]  Frantisek Matús,et al.  Infinitely Many Information Inequalities , 2007, 2007 IEEE International Symposium on Information Theory.

[5]  Nikolai K. Vereshchagin,et al.  A new class of non-Shannon-type inequalities for entropies , 2002, Commun. Inf. Syst..

[6]  Babak Hassibi,et al.  Capacity of wireless erasure networks , 2006, IEEE Transactions on Information Theory.

[7]  Terence Chan A combinatorial approach to information inequalities , 2001, Commun. Inf. Syst..

[8]  Randall Dougherty,et al.  Six New Non-Shannon Information Inequalities , 2006, 2006 IEEE International Symposium on Information Theory.

[9]  Zhen Zhang,et al.  A non-Shannon-type conditional inequality of information quantities , 1997, IEEE Trans. Inf. Theory.

[10]  Randall Dougherty,et al.  Networks, Matroids, and Non-Shannon Information Inequalities , 2007, IEEE Transactions on Information Theory.

[11]  R. Yeung,et al.  Secure network coding , 2002, Proceedings IEEE International Symposium on Information Theory,.

[12]  Frantisek Matús,et al.  Piecewise linear conditional information inequality , 2006, IEEE Transactions on Information Theory.

[13]  I. Sason Identification of new classes of non-Shannon type constrained information inequalities and their relation to finite groups , 2002, Proceedings IEEE International Symposium on Information Theory,.

[14]  Terence Chan,et al.  Group characterizable entropy functions , 2007, 2007 IEEE International Symposium on Information Theory.

[15]  Nikolai K. Vereshchagin,et al.  Combinatorial interpretation of Kolmogorov complexity , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[16]  Raymond W. Yeung,et al.  On a relation between information inequalities and group theory , 2002, IEEE Trans. Inf. Theory.

[17]  Alex J. Grant,et al.  Dualities Between Entropy Functions and Network Codes , 2008, IEEE Transactions on Information Theory.

[18]  Zhen Zhang,et al.  Distributed Source Coding for Satellite Communications , 1999, IEEE Trans. Inf. Theory.

[19]  Lihua Song,et al.  Zero-error network coding for acyclic network , 2003, IEEE Trans. Inf. Theory.

[20]  T. Chan,et al.  Capacity regions for linear and abelian network codes , 2007, 2007 Information Theory and Applications Workshop.

[21]  Nikolai K. Vereshchagin,et al.  Inequalities for Shannon Entropy and Kolmogorov Complexity , 1997, J. Comput. Syst. Sci..

[22]  Shuo-Yen Robert Li,et al.  Linear network coding , 2003, IEEE Trans. Inf. Theory.

[23]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[24]  Raymond W. Yeung,et al.  A class of non-Shannon-type information inequalities and their applications , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[25]  Raymond W. Yeung,et al.  A framework for linear information inequalities , 1997, IEEE Trans. Inf. Theory.

[26]  Frantisek Matús,et al.  Adhesivity of polymatroids , 2007, Discret. Math..

[27]  Fang Zhao,et al.  Minimum-cost multicast over coded packet networks , 2005, IEEE Transactions on Information Theory.

[28]  Raymond W. Yeung,et al.  A First Course in Information Theory , 2002 .