Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies

Single-cell RNA sequencing is at the forefront of high-resolution phenotyping experiments for complex samples. Although this methodology requires specialized equipment and expertise, it is now widely applied in research. However, it is challenging to create broadly applicable experimental designs because each experiment requires the user to make informed decisions about sample preparation, RNA sequencing and data analysis. To facilitate this decision-making process, in this tutorial we summarize current methodological and analytical options, and discuss their suitability for a range of research scenarios. Specifically, we provide information about best practices for the separation of individual cells and provide an overview of current single-cell capture methods at different cellular resolutions and scales. Methods for the preparation of RNA sequencing libraries vary profoundly across applications, and we discuss features important for an informed selection process. An erroneous or biased analysis can lead to misinterpretations or obscure biologically important information. We provide a guide to the major data processing steps and options for meaningful data interpretation. These guidelines will serve as a reference to support users in building a single-cell experimental framework—from sample preparation to data interpretation—that is tailored to the underlying research context.In this tutorial, the authors provide a comprehensive description of the considerations for designing single-cell transcriptomics studies, from sample preparation and single-cell RNA sequencing methodologies through data processing and analysis.

[1]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[2]  A. van Oudenaarden,et al.  Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations , 2017, Nature Methods.

[3]  T. Hashimshony,et al.  CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. , 2012, Cell reports.

[4]  Pierre Geurts,et al.  SCENIC: Single-cell regulatory network inference and clustering , 2017 .

[5]  N. Hacohen,et al.  Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors , 2017, Science.

[6]  Charles H. Yoon,et al.  Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq , 2016, Science.

[7]  Nikolaus Rajewsky,et al.  Cell fixation and preservation for droplet-based single-cell transcriptomics , 2017 .

[8]  Arnoud Sonnenberg,et al.  Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice. , 2011, The Journal of clinical investigation.

[9]  Yarden Katz,et al.  A single-cell survey of the small intestinal epithelium , 2017, Nature.

[10]  Conor Fitzpatrick,et al.  Nuclear RNA-seq of single neurons reveals molecular signatures of activation , 2016, Nature communications.

[11]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[12]  Cole Trapnell,et al.  Scalable and efficient single-cell DNA methylation sequencing by combinatorial indexing , 2017, bioRxiv.

[13]  N. Neff,et al.  Quantitative assessment of single-cell RNA-sequencing methods , 2013, Nature Methods.

[14]  David J. Jörg,et al.  Defining murine organogenesis at single cell resolution reveals a role for the leukotriene pathway in regulating blood progenitor formation , 2018, Nature Cell Biology.

[15]  Fabian J. Theis,et al.  Diffusion maps for high-dimensional single-cell analysis of differentiation data , 2015, Bioinform..

[16]  Wilko Weichert,et al.  Single-Cell Analysis Uncovers Clonal Acinar Cell Heterogeneity in the Adult Pancreas. , 2016, Developmental cell.

[17]  I. Nikaido,et al.  Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs , 2018, Nature Communications.

[18]  Mariella G. Filbin,et al.  Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma , 2016, Nature.

[19]  Samuel L. Wolock,et al.  A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. , 2016, Cell systems.

[20]  Mauricio Barahona,et al.  SC3 - consensus clustering of single-cell RNA-Seq data , 2016 .

[21]  M. Hemberg,et al.  scmap: projection of single-cell RNA-seq data across data sets , 2018, Nature Methods.

[22]  Peter Lindblad,et al.  A guide for in-house design of template-switch-based 5' rapid amplification of cDNA ends systems. , 2010, Analytical biochemistry.

[23]  J. C. Love,et al.  Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput , 2017, Nature Methods.

[24]  M. Grompe,et al.  Surface markers for the murine oval cell response , 2008, Hepatology.

[25]  Evan Z. Macosko,et al.  Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics , 2016, Cell.

[26]  I. Amit,et al.  Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors , 2015, Cell.

[27]  Cuong To,et al.  Miniaturization Technologies for Efficient Single-Cell Library Preparation for Next-Generation Sequencing , 2016, Journal of laboratory automation.

[28]  Anneliese O. Speak,et al.  T cell fate and clonality inference from single cell transcriptomes , 2016, Nature Methods.

[29]  Phuong Dao,et al.  Single-cell Map of Diverse Immune Phenotypes Driven by the Tumor Microenvironment , 2018 .

[30]  Joseph T. Roland,et al.  Unsupervised Trajectory Analysis of Single-Cell RNA-Seq and Imaging Data Reveals Alternative Tuft Cell Origins in the Gut. , 2017, Cell systems.

[31]  Andrew C. Adey,et al.  Single-Cell Transcriptional Profiling of a Multicellular Organism , 2017 .

[32]  P. Verstreken,et al.  A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain , 2018, Cell.

[33]  Rui-cheng Feng,et al.  Complete disassociation of adult pancreas into viable single cells through cold trypsin-EDTA digestion , 2013, Journal of Zhejiang University SCIENCE B.

[34]  Gioele La Manno,et al.  Quantitative single-cell RNA-seq with unique molecular identifiers , 2013, Nature Methods.

[35]  Marco Mignardi,et al.  Fourth Generation of Next‐Generation Sequencing Technologies: Promise and Consequences , 2016, Human mutation.

[36]  Hannah A. Pliner,et al.  Reversed graph embedding resolves complex single-cell trajectories , 2017, Nature Methods.

[37]  Andrew J. Hill,et al.  Single-cell mRNA quantification and differential analysis with Census , 2017, Nature Methods.

[38]  David E Draper,et al.  Effects of osmolytes on RNA secondary and tertiary structure stabilities and RNA-Mg2+ interactions. , 2007, Journal of Molecular Biology.

[39]  William Stafford Noble,et al.  Massively multiplex single-cell Hi-C , 2016, Nature Methods.

[40]  Richard A. Muscat,et al.  Scaling single cell transcriptomics through split pool barcoding , 2017, bioRxiv.

[41]  Hans Clevers,et al.  Single-cell messenger RNA sequencing reveals rare intestinal cell types , 2015, Nature.

[42]  Camille Stephan-Otto Attolini,et al.  Stromal gene expression defines poor-prognosis subtypes in colorectal cancer , 2015, Nature Genetics.

[43]  P. Robinson,et al.  Whole-exome sequencing for finding de novo mutations in sporadic mental retardation , 2010, Genome Biology.

[44]  Aleksandar Janjic,et al.  mcSCRB-seq: sensitive and powerful single-cell RNA sequencing , 2017, bioRxiv.

[45]  Charlotte Soneson,et al.  Bias, robustness and scalability in single-cell differential expression analysis , 2018, Nature Methods.

[46]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[47]  Sara B. Linker,et al.  Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons , 2016, Nature Protocols.

[48]  I. Amit,et al.  Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types , 2014, Science.

[49]  Keegan D. Korthauer,et al.  A statistical approach for identifying differential distributions in single-cell RNA-seq experiments , 2016, Genome Biology.

[50]  Åsa K. Björklund,et al.  Tn5 transposase and tagmentation procedures for massively scaled sequencing projects , 2014, Genome research.

[51]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[52]  Jafar S. Jabbari,et al.  Single cell RNA sequencing of stem cell-derived retinal ganglion cells , 2018, Scientific Data.

[53]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[54]  D. M. Smith,et al.  Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes , 2016, Cell metabolism.

[55]  P. Linsley,et al.  MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data , 2015, Genome Biology.

[56]  R. Ivell,et al.  A highly efficient method for long-chain cDNA synthesis using trehalose and betaine. , 2002, Analytical biochemistry.

[57]  R. Sandberg,et al.  Full-Length mRNA-Seq from single cell levels of RNA and individual circulating tumor cells , 2012, Nature Biotechnology.

[58]  Pawel Zajac,et al.  Highly multiplexed and strand-specific single-cell RNA 5′ end sequencing , 2012, Nature Protocols.

[59]  C. Ponting,et al.  Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity , 2015, Nature Methods.

[60]  Laleh Haghverdi,et al.  Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors , 2018, Nature Biotechnology.

[61]  Åsa K. Björklund,et al.  Full-length RNA-seq from single cells using Smart-seq2 , 2014, Nature Protocols.

[62]  Sarah A. Teichmann,et al.  Power Analysis of Single Cell RNA-Sequencing Experiments , 2016 .

[63]  Howard Y. Chang,et al.  Single-cell chromatin accessibility reveals principles of regulatory variation , 2015, Nature.

[64]  Pawel Zajac,et al.  Base Preferences in Non-Templated Nucleotide Incorporation by MMLV-Derived Reverse Transcriptases , 2013, PloS one.

[65]  Ambrose J. Carr,et al.  Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment , 2018, Cell.

[66]  Fabian J. Theis,et al.  Assessment of batch-correction methods for scRNA-seq data with a new test metric , 2017, bioRxiv.

[67]  J. Marioni,et al.  Pooling across cells to normalize single-cell RNA sequencing data with many zero counts , 2016, Genome Biology.

[68]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression data , 2015 .

[69]  Hongkai Ji,et al.  TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis , 2016, Nucleic acids research.

[70]  T. Tuschl,et al.  Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis. , 2017, JCI insight.

[71]  Stephen R. Quake,et al.  High fidelity hypothermic preservation of primary tissues in organ transplant preservative for single cell transcriptome analysis , 2017, BMC Genomics.

[72]  Hazen P Babcock,et al.  High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization , 2016, Proceedings of the National Academy of Sciences.

[73]  Joseph L. Herman,et al.  Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis , 2015, bioRxiv.

[74]  Rickard Sandberg,et al.  Single-cell sequencing of the small-RNA transcriptome , 2016, Nature Biotechnology.

[75]  Camille Stephan-Otto Attolini,et al.  Mex3a Marks a Slowly Dividing Subpopulation of Lgr5+ Intestinal Stem Cells. , 2017, Cell stem cell.

[76]  M. Newton,et al.  SCnorm: robust normalization of single-cell RNA-seq data , 2017, Nature Methods.

[77]  M. Gut,et al.  bigSCale: an analytical framework for big-scale single-cell data. , 2018, Genome research.

[78]  D. Bruder,et al.  Impact of enzymatic tissue disintegration on the level of surface molecule expression and immune cell function. , 2012, European journal of microbiology & immunology.

[79]  Aaron M. Streets,et al.  Microfluidic single-cell whole-transcriptome sequencing , 2014, Proceedings of the National Academy of Sciences.

[80]  B. Stripp,et al.  Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. , 2016, JCI insight.

[81]  Alexander van Oudenaarden,et al.  Single molecule fluorescent in situ hybridization (smFISH) of C. elegans worms and embryos. , 2012, WormBook : the online review of C. elegans biology.

[82]  Mattias Hansson,et al.  Single-Cell Gene Expression Analysis of a Human ESC Model of Pancreatic Endocrine Development Reveals Different Paths to β-Cell Differentiation , 2017, Stem cell reports.

[83]  Lars E. Borm,et al.  The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing , 2017, Science.

[84]  Mauro J. Muraro,et al.  De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data , 2016, Cell stem cell.

[85]  Shuqiang Li,et al.  CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq , 2016, Genome Biology.

[86]  Na Wang,et al.  Single-cell RNA-Seq analysis reveals dynamic trajectories during mouse liver development , 2017, BMC Genomics.

[87]  Allon M. Klein,et al.  Single-cell barcoding and sequencing using droplet microfluidics , 2016, Nature Protocols.

[88]  Luke Zappia,et al.  Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database , 2017, bioRxiv.

[89]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[90]  Wei Liu,et al.  Sample preparation method for isolation of single‐cell types from mouse liver for proteomic studies , 2011, Proteomics.

[91]  Aleksandra A. Kolodziejczyk,et al.  Classification of low quality cells from single-cell RNA-seq data , 2016, Genome Biology.

[92]  Hui Wang,et al.  SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis , 2015, PLoS Comput. Biol..

[93]  C. Ponting,et al.  G&T-seq: parallel sequencing of single-cell genomes and transcriptomes , 2015, Nature Methods.

[94]  Berthold Göttgens,et al.  Single-cell RNA-sequencing reveals a distinct population of proglucagon-expressing cells specific to the mouse upper small intestine , 2017, Molecular metabolism.

[95]  D. Cacchiarelli,et al.  Characterization of directed differentiation by high-throughput single-cell RNA-Seq , 2014, bioRxiv.

[96]  Catalina A. Vallejos,et al.  BASiCS: Bayesian Analysis of Single-Cell Sequencing Data , 2015, PLoS Comput. Biol..

[97]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, bioRxiv.

[98]  H. Swerdlow,et al.  Large-scale simultaneous measurement of epitopes and transcriptomes in single cells , 2017, Nature Methods.

[99]  H. Abdi,et al.  Principal component analysis , 2010 .

[100]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[101]  Yvan Saeys,et al.  A comparison of single-cell trajectory inference methods: towards more accurate and robust tools , 2018, bioRxiv.

[102]  Carolina Wählby,et al.  In situ sequencing for RNA analysis in preserved tissue and cells , 2013, Nature Methods.

[103]  D. Craig,et al.  Transcriptomics , 2020, Nature Biotechnology.

[104]  O. Stegle,et al.  Single-cell epigenomics: Recording the past and predicting the future , 2017, Science.

[105]  A. Heger,et al.  UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy , 2016, bioRxiv.

[106]  Cynthia C. Hession,et al.  Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons , 2016, Science.

[107]  Christoph Ziegenhain,et al.  zUMIs - A fast and flexible pipeline to process RNA sequencing data with UMIs , 2017, bioRxiv.

[108]  I. Amit,et al.  Single-cell spatial reconstruction reveals global division of labor in the mammalian liver , 2016, Nature.

[109]  Davis J. McCarthy,et al.  Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation , 2012, Nucleic acids research.

[110]  Åsa K. Björklund,et al.  Smart-seq2 for sensitive full-length transcriptome profiling in single cells , 2013 .

[111]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[112]  Aviv Regev,et al.  Massively-parallel single nucleus RNA-seq with DroNc-seq , 2017, Nature Methods.

[113]  P. Kharchenko,et al.  Bayesian approach to single-cell differential expression analysis , 2014, Nature Methods.

[114]  G. Sanguinetti,et al.  scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells , 2018, Nature Communications.

[115]  H. Ueda,et al.  Erratum to: Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity , 2017, Genome Biology.

[116]  Lai Guan Ng,et al.  Evaluation of UMAP as an alternative to t-SNE for single-cell data , 2018, bioRxiv.

[117]  Aleksandra A. Kolodziejczyk,et al.  Accounting for technical noise in single-cell RNA-seq experiments , 2013, Nature Methods.

[118]  Hans Clevers,et al.  The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. , 2011, Cell stem cell.

[119]  Tetsutaro Hayashi,et al.  Quartz-Seq2: a high-throughput single-cell RNA-sequencing method that effectively uses limited sequence reads , 2018, Genome Biology.

[120]  Catalin C. Barbacioru,et al.  mRNA-Seq whole-transcriptome analysis of a single cell , 2009, Nature Methods.

[121]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[122]  W. Huber,et al.  Differential expression analysis for sequence count data , 2010 .

[123]  Rebecca Hodge,et al.  STRT-seq-2i: dual-index 5ʹ single cell and nucleus RNA-seq on an addressable microwell array , 2017, bioRxiv.

[124]  Mauro J. Muraro,et al.  A Single-Cell Transcriptome Atlas of the Human Pancreas , 2016, Cell systems.

[125]  Richard H. Scheuermann,et al.  Equivalent high-resolution identification of neuronal cell types with single-nucleus and single-cell RNA-sequencing , 2017, bioRxiv.

[126]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[127]  Maria Kasper,et al.  Single-Cell Transcriptomics Reveals that Differentiation and Spatial Signatures Shape Epidermal and Hair Follicle Heterogeneity , 2016, Cell systems.

[128]  Aleksandra A. Kolodziejczyk,et al.  The technology and biology of single-cell RNA sequencing. , 2015, Molecular cell.

[129]  I. Amit,et al.  Single-cell transcriptome conservation in cryopreserved cells and tissues , 2016, Genome Biology.

[130]  David A. Weitz,et al.  Scaling by shrinking: empowering single-cell 'omics' with microfluidic devices , 2017, Nature Reviews Genetics.

[131]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[132]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[133]  N. Neff,et al.  Reconstructing lineage hierarchies of the distal lung epithelium using single cell RNA-seq , 2014, Nature.

[134]  Sandrine Dudoit,et al.  Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments , 2010, BMC Bioinformatics.

[135]  Kevin R. Moon,et al.  Recovering Gene Interactions from Single-Cell Data Using Data Diffusion , 2018, Cell.

[136]  Salah Ayoub,et al.  The Drosophila Embryo at Single Cell Transcriptome Resolution , 2017, bioRxiv.

[137]  N Sasaki,et al.  Thermostabilization and thermoactivation of thermolabile enzymes by trehalose and its application for the synthesis of full length cDNA. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[138]  Andrew C. Adey,et al.  Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing , 2015, Science.

[139]  Aaron T. L. Lun,et al.  Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R , 2017, Bioinform..

[140]  John C. Marioni,et al.  Pluripotent state transitions coordinate morphogenesis in mouse and human embryos , 2017, Nature.

[141]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[142]  Shawn M. Gillespie,et al.  Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer , 2017, Cell.

[143]  Sten Linnarsson,et al.  Single-cell mRNA isoform diversity in the mouse brain , 2017, BMC Genomics.

[144]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[145]  Chen Xu,et al.  Identification of cell types from single-cell transcriptomes using a novel clustering method , 2015, Bioinform..

[146]  Chun Jimmie Ye,et al.  Multiplexed droplet single-cell RNA-sequencing using natural genetic variation , 2017, Nature Biotechnology.

[147]  Lucas E. Wange,et al.  Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq , 2018, Nature Communications.

[148]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[149]  Omri Wurtzel,et al.  Cell type transcriptome atlas for the planarian Schmidtea mediterranea , 2018, Science.

[150]  Itai Yanai,et al.  scDual-Seq: mapping the gene regulatory program of Salmonella infection by host and pathogen single-cell RNA-sequencing , 2017, Genome Biology.

[151]  Phuong Dao,et al.  Single-Cell Immune Map of Breast Carcinoma Reveals Diverse Phenotypic States Driven by the Tumor Microenvironment , 2017, bioRxiv.

[152]  S. Quake,et al.  Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns , 2017, Cell.

[153]  Principal Investigators,et al.  Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris , 2018 .

[154]  Sean C. Bendall,et al.  Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development , 2014, Cell.

[155]  Wei Vivian Li,et al.  scImpute: accurate and robust imputation for single cell RNA-seq data , 2017, bioRxiv.

[156]  I. Hellmann,et al.  Comparative Analysis of Single-Cell RNA Sequencing Methods , 2016, bioRxiv.

[157]  R. Sandberg,et al.  Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia , 2017, Nature Medicine.

[158]  Luyi Tian,et al.  scPipe: A flexible R/Bioconductor preprocessing pipeline for single-cell RNA-sequencing data , 2018, PLoS Comput. Biol..

[159]  S. Orkin,et al.  Mapping the Mouse Cell Atlas by Microwell-Seq , 2018, Cell.