Admittance—Frequency Response in Zinc Oxide Varistor Ceramics

The lumped parameter/complex plane analysis technique revealed several contributions to the terminal admittance of the ZnO—Bi2O3 based varistor grain-boundary ac response. The terminal capacitance has been elucidated via the multiple trapping phenomena, a barrier layer polarization, and a resonance effect in the frequency range 10−2≤f≤ 109 Hz. The characterization of the trapping relaxation behavior near ∼ 105 Hz (∼ 10−6 s) provided a better understanding of a previously reported loss-peak. The possible nonuniformity in this trapping activity associated with its conductance term observed via the depression angle of a semicircular relaxation in the complex capacitance (C*) plane has been postulated.

[1]  J. Macdonald Linear relaxation: Distributions, thermal activation, structure, and ambiguity , 1987 .

[2]  W. Morris Physical properties of the electrical barriers in varistors , 1976 .

[3]  Chih-Tang Sah,et al.  Series equivalent circuit representation of SiO2Si interface and oxide trap states , 1973 .

[4]  M. Alim,et al.  Singular Nature of Preferential Conducting Paths at High Electric Fields in ZnO‐Based Varistors , 1988 .

[5]  J. Maserjian AC Impedance of Space-Charge Barriers , 1969 .

[6]  F. A. Grant Use of Complex Conductivity in the Representation of Dielectric Phenomena , 1958 .

[7]  Mohammad A. Alim,et al.  Complex plane analysis of trapping phenomena in zinc oxide based varistor grain boundaries , 1988 .

[8]  M. Tao,et al.  Different ‘‘single grain junctions’’ within a ZnO varistor , 1987 .

[9]  J. F. Cordaro,et al.  Admittance Spectroscopy of Polycrystalline ZnO‐Bi2O3 and ZnO‐BaO Systems , 1988 .

[10]  M. Inada Formation Mechanism of Nonohmic Zinc Oxide Ceramics , 1980 .

[11]  H. R. Philipp,et al.  The physics of metal oxide varistors , 1975 .

[12]  J. F. Cordaro,et al.  Bulk electron traps in zinc oxide varistors , 1986 .

[13]  A. Broniatowski Electronic States at Grain Boundaries in Semiconductors , 1985 .

[14]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[15]  S. Badwal,et al.  Equivalent Circuit Analysis of the Impedance Response of Semiconductor/Electrolyte/Counterelectrode Cells , 1982 .

[16]  D. V. Lang,et al.  Capacitance Transient Spectroscopy , 1977 .

[17]  J. C. Simpson,et al.  Characterization of deep levels in zinc oxide , 1988 .

[18]  A. R. Hutson Hall Effect Studies of Doped Zinc Oxide Single Crystals , 1957 .

[19]  G. Blatter,et al.  Electrical Properties of Grain Boundaries in the Presence of Deep Bulk Traps , 1985 .

[20]  M. Matsuoka Nonohmic Properties of Zinc Oxide Ceramics , 1971 .

[21]  A. R. Hutson Electronic properties of ZnO , 1959 .

[22]  H. R. Philipp,et al.  ac properties of metal‐oxide varistors , 1976 .

[23]  M. Alim,et al.  Influence of Sintering Temperature on Intrinsic Trapping in Zinc Oxide‐Based Varistors , 1988 .

[24]  J. Werner Electronic Properties of Grain Boundaries , 1985 .

[25]  M. Alim,et al.  High-Temperature/Field Alternating-Current Behavior of ZnO-Based Varistors , 1988 .