An efficient evolutionary algorithm for multiobjective optimization problems

An efficient evolutionary algorithm (EA) for the multiobjective optimization problems is proposed. To reduce the computational cost, a variant of k-d tree is used in our approach to preserve all nondominated solutions. Our experiments demonstrate that the algorithm outperforms the other popular multiobjective EA's, especially for the higher dimensional cases.

[1]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[2]  Jürgen Teich,et al.  Quad-trees: A Data Structure for Storing Pareto Sets in Multiobjective Evolutionary Algorithms with Elitism , 2005, Evolutionary Multiobjective Optimization.

[3]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[4]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[5]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[6]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[7]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[8]  Jonathan E. Fieldsend,et al.  Using unconstrained elite archives for multiobjective optimization , 2003, IEEE Trans. Evol. Comput..

[9]  振江 胡,et al.  Multidimensional Searching Trees with Minimum Attribute , 2002 .

[10]  Hsien-Kuei Hwang,et al.  Simple, efficient maxima-finding algorithms for multidimensional samples , 2009, ArXiv.

[11]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.