A generic construction of tight security signatures in the non-programmable random oracle model

We propose a generic construction of tightly secure signature schemes in the non-programmable random oracle model. Our construction employs the dual-mode commitment and the lossy identification schemes. Since there are many instantiation of lossy identification schemes, we can obtain many tightly secure signature schemes in the non-programmable random oracle model.

[1]  Jesper Buus Nielsen,et al.  Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-committing Encryption Case , 2002, CRYPTO.

[2]  Marc Fischlin,et al.  Limitations of the Meta-Reduction Technique: The Case of Schnorr Signatures , 2013, IACR Cryptol. ePrint Arch..

[3]  Mehdi Tibouchi,et al.  Tightly Secure Signatures From Lossy Identification Schemes , 2015, Journal of Cryptology.

[4]  David Pointcheval,et al.  Tighter Reductions for Forward-Secure Signature Schemes , 2013, Public Key Cryptography.

[5]  Chanathip Namprempre,et al.  From Identification to Signatures Via the Fiat–Shamir Transform: Necessary and Sufficient Conditions for Security and Forward-Security , 2008, IEEE Transactions on Information Theory.

[6]  Masayuki Fukumitsu,et al.  Black-Box Separations on Fiat-Shamir-Type Signatures in the Non-Programmable Random Oracle Model , 2015, ISC.

[7]  Shingo Hasegawa,et al.  Lossy identification schemes from decisional RSA , 2014, 2014 International Symposium on Information Theory and its Applications.

[8]  Shafi Goldwasser,et al.  Complexity of lattice problems - a cryptographic perspective , 2002, The Kluwer international series in engineering and computer science.

[9]  Pascal Paillier,et al.  Discrete-Log-Based Signatures May Not Be Equivalent to Discrete Log , 2005, ASIACRYPT.

[10]  Shingo Hasegawa,et al.  A Lossy Identification Scheme Using the Subgroup Decision Assumption , 2014, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[11]  Silvio Micali,et al.  A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks , 1988, SIAM J. Comput..

[12]  Marc Fischlin,et al.  Random Oracles with(out) Programmability , 2010, ASIACRYPT.

[13]  Amos Fiat,et al.  How to Prove Yourself: Practical Solutions to Identification and Signature Problems , 1986, CRYPTO.

[14]  Yunlei Zhao,et al.  Black-Box Separations of Hash-and-Sign Signatures in the Non-Programmable Random Oracle Model , 2015, ProvSec.

[15]  Ivan Visconti,et al.  Hybrid commitments and their applications to zero-knowledge proof systems , 2007, Theor. Comput. Sci..

[16]  Jacques Stern,et al.  Security Arguments for Digital Signatures and Blind Signatures , 2015, Journal of Cryptology.

[17]  Claus-Peter Schnorr,et al.  Efficient signature generation by smart cards , 2004, Journal of Cryptology.

[18]  Chanathip Namprempre,et al.  The One-More-RSA-Inversion Problems and the Security of Chaum's Blind Signature Scheme , 2003, Journal of Cryptology.

[19]  Yehuda Lindell,et al.  An Efficient Transform from Sigma Protocols to NIZK with a CRS and Non-programmable Random Oracle , 2015, TCC.