Local asymptotics for the area of random walk excursions

We prove a local limit theorem for the area of the positive exursion of random walks with zero mean and finite variance. Our main result complements previous work of Caravenna and Chaumont, Sohier, as well as Kim and Pittel.

[1]  J. Deuschel,et al.  Pinning and wetting transition for (1+1)-dimensional fields with Laplacian interaction , 2007, math/0703434.

[2]  Lajos Takács On the total heights of random rooted trees , 1992 .

[3]  Donald L. Iglehart,et al.  Weak Convergence to Brownian Meander and Brownian Excursion , 1977 .

[4]  Manuel Soares,et al.  Airy Functions And Applications To Physics , 2004 .

[5]  Philippe Flajolet,et al.  On the Analysis of Linear Probing Hashing , 1998, Algorithmica.

[6]  R. Durrett Brownian motion and martingales in analysis , 1984 .

[7]  Lajos Takács On the Total Heights of Random Rooted Binary Trees , 1994, J. Comb. Theory, Ser. B.

[8]  Shinzo Watanabe,et al.  An asymptotic formula for the Kolmogorov diffusion and a refinement of Sinai's estimates for the integral of Brownian motion , 1994 .

[9]  Erwin Bolthausen,et al.  On a Functional Central Limit Theorem for Random Walks Conditioned to Stay Positive , 1976 .

[10]  M. Lefebvre First-passage densities of a two-dimensional process , 1989 .

[11]  Vladimir Vatutin,et al.  Local probabilities for random walks conditioned to stay positive , 2007, 0711.1302.

[12]  E. Omey,et al.  Abelian and Tauberian theorems for the Laplace transform of functions in several variables , 1989 .

[13]  Svante Janson,et al.  Brownian excursion area, Wright’s constants in graph enumeration, and other Brownian areas , 2007, 0704.2289.

[14]  Boris G. Pittel,et al.  Confirming the Kleitman-Winston Conjecture on the Largest Coefficient in a q-Catalan Number , 2000, J. Comb. Theory, Ser. A.

[15]  Cyril Banderier,et al.  Analytic Combinatorics of Lattice Paths: Enumeration and Asymptotics for the Area † , 2006 .

[16]  Denis Denisov,et al.  Random walks in cones , 2015 .

[17]  L. Chaumont,et al.  An invariance principle for random walk bridges conditioned to stay positive , 2012, 1204.6148.

[18]  R. Doney Local behaviour of first passage probabilities , 2010, 1006.5316.

[19]  M. Shubin,et al.  The Schrödinger Equation , 1991 .

[20]  D. Steinsaltz,et al.  Quasilimiting behavior for one-dimensional diffusions with killing , 2010, 1004.5044.

[21]  Lajos Takács Limit distributions for the Bernoulli meander , 1995 .

[22]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[23]  Daniel J. Kleitman,et al.  On the Asymptotic Number of Tournament Score Sequences , 1983, J. Comb. Theory, Ser. A.

[24]  Julien Sohier A functional limit convergence towards brownian excursion , 2010, 1012.0118.

[25]  Joel Spencer ENUMERATING GRAPHS AND BROWNIAN MOTION , 1997 .

[26]  Lajos Takács,et al.  A bernoulli excursion and its various applications , 1991, Advances in Applied Probability.