On maximal curves with Frobenius dimension 3

Frobenius dimension is one of the most important birational invariants of maximal curves. In this paper, a characterization of maximal curves with Frobenius dimension equal to 3 is provided. Our main tool is the Natural Embedding Theorem for maximal curves. As an application, maximal curves with Frobenius dimension 3 defined over the fields with 16 and 25 elements are completely classified.

[1]  Gábor Korchmáros,et al.  Embedding of a Maximal Curve in a Hermitian Variety , 2001, Compositio Mathematica.

[2]  Fernando Torres,et al.  The genus of curves over finite fields with many rational points , 1996 .

[3]  Anthony Joseph,et al.  First European Congress of Mathematics , 1994 .

[4]  C. Xing,et al.  On Subfields of the Hermitian Function Field , 2000, Compositio Mathematica.

[5]  Henning Stichtenoth,et al.  Algebraic function fields over finite fields with many rational places , 1995, IEEE Trans. Inf. Theory.

[6]  J. Tate Endomorphisms of abelian varieties over finite fields , 1966 .

[7]  Chaoping Xing,et al.  The genus of maximal function fields over finite fields , 1995 .

[8]  J. Voloch,et al.  Weierstrass Points and Curves Over Finite Fields , 1986 .

[9]  F. Torres,et al.  Algebraic Curves over Finite Fields , 1991 .

[10]  Norman E. Hurt Many Rational Points , 2003 .

[11]  Fernando Torres,et al.  On Maximal Curves , 1996 .

[12]  Henning Stichtenoth,et al.  A characterization of Hermitian function fields over finite fields. , 1994 .

[13]  Henning Stichtenoth,et al.  Topics in Geometry, Coding Theory and Cryptography (Algebra and Applications) , 2006 .

[14]  Gerard van der Geer,et al.  Curves over Finite Fields and Codes , 2001 .

[15]  Arnaldo Garcia On Curves with Many Rational Points over Finite Fields , 2002 .

[16]  Gábor Korchmáros,et al.  A new family of maximal curves over a finite field , 2007, 0711.0445.

[17]  Arnaldo Garcia,et al.  Curves over Finite Fields Attaining the Hasse-Weil Upper Bound , 2001 .

[18]  G. Geer Coding Theory and Algebraic Curves Over Finite Fields , 2001 .

[19]  H. Stichtenoth,et al.  Topics in Geometry, Coding Theory and Cryptography , 2010 .