Evolution of interstellar dust and stardust in the solar neighbourhood

Aims. We studied the evolution of the abundance in interstellar dust species that originate in stellar sources and from condensation in molecular clouds in the local interstellar medium of the Milky Way. We determined from this the input of dust material to the Solar System. Methods. A one-zone chemical evolution model of the Milky Way for the elemental composition of the disk combined with an evolution model for its interstellar dust component similar to that of Dwek (1998) is developed. The dust model considers dust-mass return from AGB stars as calculated from synthetic AGB models combined with models for dust condensation in stellar outflows. Supernova dust formation is included in a simple parametrised form that is gauged by observed abundances of presolar dust grains with a supernova origin. For dust growth in the ISM, a simple method is developed for coupling this with disk and dust evolution models. Results. A chemical evolution model of the solar neighbourhood in the Milky Way is calculated, which forms the basis for calculating a model of the evolution of the interstellar dust population at the galactocentric radius of the Milky Way. The model successfully passes all standard tests for the reliability of such models. In particular the abundance evolution of the important dust-forming elements is compared with observational results for the metallicity-dependent evolution of the abundances for G-type stars from the solar neighbourhood. It is found that the new tables of Nomoto et al. (2006) for the heavy element production give much better results for the abundance evolution of these important elements than the widely used tables of Woosley & Weaver (1995). The time evolution for the abundance of the following dust species is followed in the model: silicate, carbon, silicon carbide, and iron dust from AGB stars and from supernovae, as well as silicate, carbon, and iron dust grown in molecular clouds. It is shown that the interstellar dust population is dominated by dust accreted in molecular clouds; stardust only forms a minor fraction. Most of the dust material entering the Solar System at its formation does not show isotopic abundance anomalies of the refractory elements, i.e., inconspicuous isotopic abundances do not point to a Solar System origin for dust grains. The observed abundance ratios of presolar dust grains formed in supernova ejecta and in AGB star outflows requires that, for the ejecta from supernovae, the fraction of refractory elements condensed into dust is 0.15 for carbon dust and is quite small (∼10 −4 ) for other dust species.

[1]  E. Dwek,et al.  The Evolution of Dust in the Early Universe with Applications to the Galaxy SDSS J1148+5251 , 2007, 0705.3799.

[2]  S. Bianchi,et al.  Dust formation and survival in supernova ejecta , 2007, 0704.0586.

[3]  L. Nittler,et al.  Characterization of Presolar Silicate and Oxide Grains in Primitive Carbonaceous Chondrites , 2007 .

[4]  C. Prieto,et al.  Oxygen abundances in nearby stars - Clues to the formation and evolution of the Galactic disk , 2007, astro-ph/0701362.

[5]  J. Hovenier,et al.  The shape and composition of interstellar silicate grains , 2006, astro-ph/0611329.

[6]  W. Chaplin,et al.  Solar Abundances and Helioseismology: Fine-Structure Spacings and Separation Ratios of Low-Degree p-Modes , 2006, astro-ph/0610052.

[7]  V. Dwarkadas Supernova Explosions in Winds and Bubbles, with Applications to SN 1987A , 2006, astro-ph/0612665.

[8]  Hajime Yano,et al.  Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples , 2006, Science.

[9]  Ian D. Hutcheon,et al.  Isotopic Compositions of Cometary Matter Returned by Stardust , 2006, Science.

[10]  B. Ercolano,et al.  Dust yields in clumpy supernova shells: SN 1987A revisited , 2006 .

[11]  M. Wiescher,et al.  Mg and Al production in intermediate-mass asymptotic giant branch stars , 2006 .

[12]  N. Smith Giant Outbursts of the Eta Carinae-P Cygni Type , 2006, astro-ph/0609422.

[13]  K. Nomoto,et al.  Galactic Chemical Evolution: Carbon through Zinc , 2006, astro-ph/0608688.

[14]  C. McKee,et al.  The Global Evolution of Giant Molecular Clouds. I. Model Formulation and Quasi-Equilibrium Behavior , 2006, astro-ph/0608471.

[15]  A. Weiss,et al.  Basic physical parameters of a selected sample of evolved stars , 2006, astro-ph/0608160.

[16]  K. Cunha,et al.  Neon Abundances in B Stars of the Orion Association: Solving the Solar Model Problem? , 2006, astro-ph/0606738.

[17]  S. Owocki,et al.  On the Role of Continuum-driven Eruptions in the Evolution of Very Massive Stars and Population III Stars , 2006, astro-ph/0606174.

[18]  J. Fabbri,et al.  Massive-Star Supernovae as Major Dust Factories , 2006, Science.

[19]  K. Nomoto,et al.  Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution , 2006, astro-ph/0605725.

[20]  P. Frisch Interstellar Dust at the Magnetic Wall of the Heliosphere. II , 2006, astro-ph/0603745.

[21]  B. Williams,et al.  Dust Destruction in Type Ia Supernova Remnants in the Large Magellanic Cloud , 2006, astro-ph/0602313.

[22]  H. Gail,et al.  Composition and quantities of dust produced by AGB-stars and returned to the interstellar medium , 2006 .

[23]  E. Falgarone,et al.  Dissipative structures of diffuse molecular gas: I - Broad HCO + (J=1-0) emission. , 2006, astro-ph/0601607.

[24]  Usa,et al.  The origin and chemical evolution of carbon in the Galactic thin and thick discs , 2006, astro-ph/0601130.

[25]  M. Pinsonneault,et al.  The Solar Heavy-Element Abundances. I. Constraints from Stellar Interiors , 2005, astro-ph/0511779.

[26]  A. Tielens,et al.  Pixie Dust: The Silicate Features in the Diffuse Interstellar Medium , 2005, astro-ph/0510156.

[27]  Bruce G. Elmegreen,et al.  The Effect of Star Formation History on the Inferred Stellar Initial Mass Function , 2005, astro-ph/0509282.

[28]  Canada.,et al.  Radial transport of dust in spiral galaxies , 2005, astro-ph/0508304.

[29]  Bangalore,et al.  Elemental abundance survey of the Galactic thick disc , 2005, astro-ph/0512505.

[30]  J. Lauroesch,et al.  The Homogeneity of Interstellar Elemental Abundances in the Galactic Disk , 2005, astro-ph/0512312.

[31]  F. Stadermann,et al.  Presolar Graphite from AGB Stars: Microstructure and s-Process Enrichment , 2005 .

[32]  Thomas G. Barnes,et al.  Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis in honor of David L. Lambert , 2005 .

[33]  A. Tielens The Physics and Chemistry of the Interstellar Medium , 2005 .

[34]  S. Messenger,et al.  Supernova Olivine from Cometary Dust , 2005, Science.

[35]  D. Astronomia,et al.  Sulphur abundance in Galactic stars , 2005, astro-ph/0507030.

[36]  A. Helmi,et al.  Pieces of the puzzle: ancient substructure in the Galactic disc , 2005, astro-ph/0505401.

[37]  P. Magain,et al.  Chemical abundances in 43 metal-poor stars , 2005, Proceedings of the International Astronomical Union.

[38]  R. Tuffs,et al.  The Spectral Energy Distribution of Gas-Rich Galaxies: Confronting Models with Data , 2005 .

[39]  C. Soubiran,et al.  Abundance trends in kinematical groups of the Milky Way's disk , 2005, astro-ph/0503498.

[40]  D. Lambert,et al.  Surface abundances of light elements for a large sample of early B-type stars – IV. The magnesium abundance in 52 stars – a test of metallicity , 2005 .

[41]  Potsdam,et al.  alpha-, r-, and s-process element trends in the Galactic thin and thick disks , 2004, astro-ph/0412132.

[42]  G. Meynet,et al.  Stellar evolution with rotation XI. Wolf-Rayet star populations at different metallicities , 2004, astro-ph/0408319.

[43]  Alyson G. Wilson The dusty and molecular universe: a prelude to Herschel and ALMA , 2005 .

[44]  H. Zinnecker,et al.  The initial mass function 50 years later , 2005 .

[45]  K. Cunha,et al.  Galactic Metallicity Gradients Derived from a Sample of OB Stars , 2004, astro-ph/0409084.

[46]  D. Lambert,et al.  Surface abundances of light elements for a large sample of early B‐type stars – III. An analysis of helium lines in spectra of 102 stars , 2004 .

[47]  E. Tolstoy,et al.  Stellar Chemical Signatures and Hierarchical Galaxy Formation , 2004, astro-ph/0406120.

[48]  G. Helden,et al.  Experimental study of gas phase titanium and aluminum oxide clusters , 2004 .

[49]  C. Flynn,et al.  The local surface density of disc matter mapped by Hipparcos , 2004, astro-ph/0405155.

[50]  E. H. Olsen,et al.  The Geneva-Copenhagen survey of the Solar neighbourhood - Ages, metallicities, and kinematic properties of ~14 000 F and G dwarfs , 2004, astro-ph/0405198.

[51]  U. Texas,et al.  Interstellar Turbulence II: Implications and Effects , 2004, astro-ph/0404452.

[52]  A. Tielens,et al.  The Absence of Crystalline Silicates in the Diffuse Interstellar Medium , 2004, astro-ph/0403609.

[53]  -INAF,et al.  The evolution of the Milky Way from its earliest phases: Constraints on stellar nucleosynthesis , 2004, astro-ph/0401499.

[54]  L. Eyer,et al.  Isochrone ages for field dwarfs: method and application to the age–metallicity relation , 2004, astro-ph/0401418.

[55]  R. Braun,et al.  The WSRT wide-field H I survey - II. Local Group features , 2003, astro-ph/0312323.

[56]  T. Beers,et al.  First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy , 2003, astro-ph/0311082.

[57]  M. Asplund,et al.  The Evolution of the C/O Ratio in Metal-poor Halo Stars , 2003, astro-ph/0310472.

[58]  R. Salvaterra,et al.  Dust formation in very massive primordial supernovae , 2003, astro-ph/0307087.

[59]  Richard G. Arendt,et al.  Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints , 2003, astro-ph/0312641.

[60]  F. Stadermann,et al.  Polytype distribution of circumstellar silicon carbide: microstructural characterization by transmission electron microscopy , 2003 .

[61]  A. Inoue Evolution of Dust-to-Metal Ratio in Galaxies , 2003, astro-ph/0308204.

[62]  J. Lattanzio,et al.  Production of Aluminium and the Heavy Magnesium Isotopes in Asymptotic Giant Branch Stars , 2003, Publications of the Astronomical Society of Australia.

[63]  D. O. Astronomy,et al.  Dust in the Early Universe: Dust Formation in the Ejecta of Population III Supernovae , 2003, astro-ph/0307108.

[64]  U. Feldman,et al.  Elemental Abundances in the Solar Upper Atmosphere Derived by Spectroscopic Means , 2003 .

[65]  A. Tielens,et al.  Peering into Stardust , 2003, Science.

[66]  T. Henning,et al.  Structural processing of enstatite by ion bombardment , 2003 .

[67]  F. Stadermann,et al.  Samples of Stars Beyond the Solar System: Silicate Grains in Interplanetary Dust , 2003, Science.

[68]  M. Edmunds,et al.  Dust formation in early galaxies , 2003, astro-ph/0302566.

[69]  R. Spurzem,et al.  A multi-phase chemo-dynamical SPH code for galaxy evolution. Testing the code , 2003, astro-ph/0301531.

[70]  E. Jessberger,et al.  Composition, Structure, and Size Distribution of Dust in the Local Interstellar Cloud , 2003 .

[71]  E. Jessberger,et al.  Elemental Abundances and Mass Densities of Dust and Gas in the Local Interstellar Cloud , 2003 .

[72]  C. Prieto,et al.  The chemical compositions of Galactic disc F and G dwarfs , 2002, astro-ph/0211551.

[73]  H. Palme 1.03 – Solar System Abundances of the Elements , 2003 .

[74]  F. Molster,et al.  The Mineralogy of Interstellar and Circumstellar Dust , 2003 .

[75]  Randall K. Smith,et al.  The X-Ray Halo of GX 5-1 , 2002, astro-ph/0605199.

[76]  P. Gil-Pons,et al.  On the formation of Super-AGB stars in intermediate mass close binary systems , 2002, astro-ph/0209581.

[77]  B. Barbuy,et al.  Keck NIRSPEC Infrared OH Lines: Oxygen Abundances in Metal-poor Stars down to [Fe/H] = –2.9 , 2002, astro-ph/0207660.

[78]  Anthony G. A. Brown,et al.  Exploring the Full Stellar Population of the Upper Scorpius OB Association , 2002 .

[79]  C. Prieto,et al.  A Reappraisal of the Solar Photospheric C/O Ratio , 2002, astro-ph/0206089.

[80]  K. Leuven,et al.  Dust and the spectral energy distribution of the OH/IR star OH 127.8+0.0: Evidence for circumstellar metallic iron , 2002, astro-ph/0201128.

[81]  P. Kroupa The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems , 2002, Science.

[82]  F. Matteucci The chemical evolution of the galaxy , 2003 .

[83]  M. Edmunds An elementary model for the dust cycle in galaxies , 2001 .

[84]  C. Matzner On the Role of Massive Stars in the Support and Destruction of Giant Molecular Clouds , 2001, astro-ph/0110278.

[85]  H. Holweger Photospheric Abundances: Problems, Updates, Implications , 2001, astro-ph/0107426.

[86]  Carlos Allende Prieto,et al.  The Forbidden Abundance of Oxygen in the Sun , 2001, astro-ph/0106360.

[87]  D. Meyer,et al.  Interstellar Abundance Standards Revisited , 2001 .

[88]  R. Wimmer–Schweingruber Solar and Galactic Composition , 2001 .

[89]  M. Merrifield,et al.  Luminous and dark matter in the Milky Way , 2001, astro-ph/0104465.

[90]  Linda J. Smith,et al.  Chemical Composition and Origin of Nebulae around Luminous Blue Variables , 2001, astro-ph/0103471.

[91]  P. Ferrara Dust Formation in Primordial Type II Supernovae , 2000, astro-ph/0009176.

[92]  Andreu Alibés,et al.  Galactic chemical abundance evolution in the solar neighborhood up to the iron peak , 2000, astro-ph/0012505.

[93]  P. Hoppe,et al.  Isotopic properties of silicon carbide X grains from the Murchison meteorite in the size range 0.5‐1.5 μm , 2000 .

[94]  A. Jones Depletion patterns and dust evolution in the interstellar medium , 1999, astro-ph/9907066.

[95]  Atsunori Yonehara,et al.  Publications of the Astronomical Society of Australia , 2000 .

[96]  Andre Maeder,et al.  Stellar Evolution with Rotation , 2000 .

[97]  H. W. Zhang,et al.  Chemical composition of 90 F and G disk dwarfs , 1999, astro-ph/9912342.

[98]  Koichi Iwamoto,et al.  Nucleosynthesis in Chandrasekhar Mass Models for Type Ia Supernovae and Constraints on Progenitor Systems and Burning-Front Propagation , 1999 .

[99]  D. Brownlee,et al.  An infrared spectral match between GEMS and interstellar grains. , 1999, Science.

[100]  H. Hirashita Cyclic Changes in Dust-to-Gas Ratio , 1999 .

[101]  D. York,et al.  The Diffuse Interstellar Clouds toward 23 Orionis , 1999, astro-ph/9905234.

[102]  I. Hachisu,et al.  A Wide Symbiotic Channel to Type Ia Supernovae , 1999, astro-ph/9902304.

[103]  S. Woosley,et al.  Low-Density Graphite Grains and Mixing in Type II Supernovae , 1999 .

[104]  A. Tielens Interstellar Depletions and the Life Cycle of Interstellar Dust , 1998 .

[105]  E. Zinner STELLAR NUCLEOSYNTHESIS AND THE ISOTOPIC COMPOSITION OF PRESOLAR GRAINS FROM PRIMITIVE METEORITES , 1998 .

[106]  N. Grevesse,et al.  Standard Solar Composition , 1998 .

[107]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[108]  E. Dwek The Evolution of the Elemental Abundances in the Gas and Dust Phases of the Galaxy , 1997, astro-ph/9707024.

[109]  E. F. Dishoeck,et al.  Chemical evolution of star-forming regions. , 1998, Annual review of astronomy and astrophysics.

[110]  A. Ferrara,et al.  Dust-to-Gas Ratio and Metal Abundance in Dwarf Galaxies , 1997, astro-ph/9705037.

[111]  Ernst K. Zinner,et al.  Astrophysical Implications of the Laboratory Study of Presolar Materials , 1997 .

[112]  Jonathan P. Williams,et al.  The Galactic Distribution of OB Associations in Molecular Clouds , 1997 .

[113]  N. Odegard,et al.  Detection and Characterization of Cold Interstellar Dust and Polycyclic Aromatic Hydrocarbon Emission, from COBE Observations , 1996, astro-ph/9610198.

[114]  C. Chiappini,et al.  The Chemical Evolution of the Galaxy: The Two-Infall Model , 1996, astro-ph/9609199.

[115]  Izumi Hachisu,et al.  A New Model for Progenitor Systems of Type Ia Supernovae , 1996 .

[116]  M. Groenewegen,et al.  New theoretical yields of intermediate mass stars , 1996, astro-ph/9610030.

[117]  A. Tielens,et al.  Grain Shattering in Shocks: The Interstellar Grain Size Distribution , 1996 .

[118]  Kenneth R. Sembach,et al.  INTERSTELLAR ABUNDANCES FROM ABSORPTION-LINE OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE , 1996 .

[119]  H. Rocha-Pinto,et al.  The metallicity distribution of G dwarfs in the solar neighbourhood , 1995, astro-ph/9510101.

[120]  P. Hoppe,et al.  Isotopic compositions of C, N, O, Mg, and Si, trace element abundances, and morphologies of single circumstellar graphite grains in four density fractions from the Murchison meteorite , 1995 .

[121]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[122]  E. Anders,et al.  INTERSTELLAR GRAINS IN METEORITES : III. GRAPHITE AND ITS NOBLE GASES , 1995 .

[123]  S. Woosley,et al.  Galacti chemical evolution: Hygrogen through zinc , 1994, astro-ph/9411003.

[124]  A. Tielens,et al.  Grain destruction in shocks in the interstellar medium , 1994 .

[125]  M. Dopita,et al.  On the Law of Star Formation in Disk Galaxies , 1994 .

[126]  A. Schroeder,et al.  The Galactic supernova rate , 1994 .

[127]  K. Cunha,et al.  Chemical evolution of the Orion association. II. The carbon, nitrogen, oxygen, silicon, and iron abundances of main-sequence B stars , 1994 .

[128]  J. Pollack,et al.  Composition and radiative properties of grains in molecular clouds and accretion disks , 1994 .

[129]  E. Anders,et al.  Interstellar grains in meteorites: I. Isolation of SiC, graphite and diamond; size distributions of SiC and graphite , 1994 .

[130]  G. Gilmore,et al.  The distribution of low-mass stars in the Galactic disc , 1993 .

[131]  Michel Casse,et al.  Origin and evolution of the elements , 1993 .

[132]  R. Humphreys The Minnesota lectures on the structure and dynamics of the Milky Way , 1993 .

[133]  M. Skrutskie,et al.  in Protostars and Planets III , 1993 .

[134]  N. Grevesse,et al.  In: Origin and Evolution of the elements , 1993 .

[135]  D. Whittet,et al.  Dust in the Galactic Environment , 2018 .

[136]  N. C. Rana Chemical Evolution of the Galaxy , 1991 .

[137]  F. Keenan,et al.  The Determination of Element Abundances in the Solar Neighborhood from B-Type Stellar Spectra. II. Non--LTE Calculations for AR II , 1990 .

[138]  A. Jones Iron or iron oxide grains in the interstellar medium , 1990 .

[139]  S. Wood,et al.  Geochim. cosmochim. acta , 1990 .

[140]  K. Nomoto,et al.  Formation of dust grains in the ejecta of SN 1987A. II. , 1989 .

[141]  D. Leisawitz Physical Properties of the Molecular Clouds Found in a CO Survey of Regions Around 34 Open Clusters , 1989 .

[142]  K. Liffman,et al.  Stochastic evolution of refractory interstellar dust during the chemical evolution of a two-phase interstellar medium , 1989 .

[143]  B. Pagel,et al.  Evolutionary phenomena in galaxies , 1989 .

[144]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[145]  B. Draine,et al.  The Physics of Interstellar Shock Waves , 1987 .

[146]  Glenn E. Miller,et al.  The Initial mass function and stellar birthrate in the solar neighborhood , 1979 .

[147]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[148]  W. Arnett,et al.  Evolution Of Galaxies .4. Highly Flattened Disks , 1975 .

[149]  W. Arnett,et al.  The evolution of galaxies. IV. Highly flattened disks , 1975 .

[150]  R. Balian,et al.  Atomic and molecular physics and interstellar matter , 1975 .

[151]  J. Whelan,et al.  Binaries and Supernovae of Type I , 1973 .

[152]  E. Salpeter,et al.  Surface Adsorption of Light Gas Atoms , 1970 .

[153]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[154]  L. Spitzer Behavior of Matter in Space. , 1954 .

[155]  R. Lowie,et al.  Physics and Chemistry. , 1930, Nature.