Technology Transfer: Academia to Industry

High quality and innovation are major selling points in the technology market. Continuous improvement of products and the introduction of completely new products are a day to day challenge that industry has to face to keep compet- itive in a dynamic market. Customers desire changes when new materials and technologies become available. Consequently, new production views such as the whole life cycle cost of a product become an issue in industry. Keeping up with these changes is difficult and the application of the most recent technologies in a sound and effective way is often not straight forward. Academia is one of the sources of novel and scientifically well founded technologies. Furthermore, academia has a rich pool of thoroughly tested methods, well educated students and professional academics to deliver these methods. Technology transfer be- tween academia and industry, therefore, is a productive way to bridge the gap between 'mysterious' theory and 'plain' practice. Various aspects of this trans- fer are discussed in this chapter. The most recent technology of multi-objective optimization is introduced to illustrate the challenges that come along with the cooperation between academia and industry.

[1]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[2]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[3]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[4]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[5]  Thomas Bartz-Beielstein,et al.  Experimental Research in Evolutionary Computation - The New Experimentalism , 2010, Natural Computing Series.

[6]  Jörn Mehnen,et al.  Using predators and preys in evolution strategies , 2005, GECCO '05.

[7]  Yaochu Jin,et al.  Knowledge incorporation in evolutionary computation , 2005 .

[8]  L. Lasdon,et al.  On a bicriterion formation of the problems of integrated system identification and system optimization , 1971 .

[9]  D. F. Andrews,et al.  PLOTS OF HIGH-DIMENSIONAL DATA , 1972 .

[10]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[11]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[12]  P. Siarry,et al.  Multiobjective Optimization: Principles and Case Studies , 2004 .

[13]  Rein Luus,et al.  Handling inequality constraints in direct search optimization , 2006 .

[14]  Rajkumar Roy,et al.  Development of a soft computing-based framework for engineering design optimisation with quantitative and qualitative search spaces , 2007, Appl. Soft Comput..

[15]  Thomas Jansen,et al.  Optimization with randomized search heuristics - the (A)NFL theorem, realistic scenarios, and difficult functions , 2002, Theor. Comput. Sci..

[16]  Zbigniew Michalewicz,et al.  A Survey of Constraint Handling Techniques in Evolutionary Computation Methods , 1995 .

[17]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[18]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[19]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[20]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[21]  JiGuan G. Lin Multiple-objective problems: Pareto-optimal solutions by method of proper equality constraints , 1976 .

[22]  Gary B. Lamont,et al.  A Statistical Comparison of Multiobjective Evolutionary Algorithms Including the MOMGA-II , 2001, EMO.

[23]  Joerg Fliege,et al.  Approximation techniques for the set of efficient points , 2001 .

[24]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[25]  Heike Trautmann,et al.  Integration of Expert's Preferences in Pareto Optimization by Desirability Function Techniques , 2006 .

[26]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[27]  David B. Fogel,et al.  System Identification Through Simulated Evolution: A Machine Learning Approach to Modeling , 1991 .

[28]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[29]  Carsten Witt,et al.  Collaborative Research Centre 531: Computational Intelligence – Theory and Practice (Sonderforschungsbereich 531: Computational Intelligence – Theorie und Praxis) , 2007, it Inf. Technol..

[30]  Neil Gershenfeld,et al.  The nature of mathematical modeling , 1998 .

[31]  F. Busse An exploration of chaos: J. Argyris, G. Faust and M. Haase, Elsevier, Amsterdam, 1994, 722 pp., ISBN 0-444-82002-7 (hardbound), 0-444-82003-5 (paperback) , 1994 .

[32]  Vangelis Th. Paschos,et al.  Probabilistic Combinatorial Optimization on Graphs , 2006 .

[33]  Nicola Beume,et al.  Multi-objective optimisation using S-metric selection: application to three-dimensional solution spaces , 2005, 2005 IEEE Congress on Evolutionary Computation.

[34]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[35]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[36]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[37]  Anthony Chen,et al.  Constraint handling in genetic algorithms using a gradient-based repair method , 2006, Comput. Oper. Res..

[38]  Claus Hillermeier,et al.  Nonlinear Multiobjective Optimization , 2001 .

[39]  Olivier François,et al.  Design of evolutionary algorithms-A statistical perspective , 2001, IEEE Trans. Evol. Comput..

[40]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[41]  Lothar Thiele,et al.  Proceedings of the 2nd international conference on Evolutionary multi-criterion optimization , 2003 .

[42]  D. Giesy,et al.  Calculation of Pareto-optimal solutions to multiple-objective problems using threshold-of-acceptability constraints , 1978 .

[43]  Kalyanmoy Deb,et al.  Omni-optimizer: A Procedure for Single and Multi-objective Optimization , 2005, EMO.

[44]  Heike Trautmann,et al.  On the distribution of the desirability index using Harrington’s desirability function , 2006 .

[45]  Jean-Charles Billaut,et al.  Multicriteria scheduling , 2005, Eur. J. Oper. Res..

[46]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[47]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[48]  Marian B. Gorzalczany Computational Intelligence Systems and Applications - Neuro-Fuzzy and Fuzzy Neural Synergisms , 2002, Studies in Fuzziness and Soft Computing.

[49]  Carlos M. Fonseca,et al.  Multiobjective genetic algorithms , 1993 .

[50]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.