Simulation Of Robust Master Production Scheduling In An Industrially Relevant Planning Environment

This paper presents a simulation analysis on the effects of robust master production scheduling. Up to now, relatively highly aggregated planning models for robust master production scheduling were regarded and the realizability of the planning results was not considered. This paper analyses a more detailed model for master production scheduling than in previous works. The evaluation of the planning results is made by providing the planning results to the subsequent planning levels in a hierarchical production planning system and realizing them in a realistic production system. The primary objective of the production system is to minimise tardiness of customer order deliveries. The secondary objective is to minimise inventory of end products. It is shown that robust master production scheduling in such a planning system leads to significant reductions of tardiness of customer order shipment. Compared to an equivalent deterministic approach for master production scheduling, the mean customer order backlog is reduced more than the mean inventory levels are increased.

[1]  Armin Scholl,et al.  Robuste Planung und Optimierung , 2001 .

[2]  Frank Herrmann,et al.  Robuste Optimierung zur Produktionsprogrammplanung , 2021, Produktionsplanung und -steuerung.

[3]  Robert J. Vanderbei,et al.  Robust Optimization of Large-Scale Systems , 1995, Oper. Res..

[4]  Han-Lin Li,et al.  A robust optimization model for stochastic logistic problems , 2000 .

[5]  K. Preston White,et al.  A comparison of five steady-state truncation heuristics for simulation , 2000, 2000 Winter Simulation Conference Proceedings (Cat. No.00CH37165).

[6]  Laureano F. Escudero,et al.  Production planning via scenario modelling , 1993, Ann. Oper. Res..

[7]  Roger J.-B. Wets,et al.  The aggregation principle in scenario analysis stochastic optimization , 1989 .

[8]  Stefan Helber,et al.  Dynamic capacitated lot sizing with random demand and dynamic safety stocks , 2013, OR Spectr..

[9]  Frank Herrmann Operative Planung in IT-Systemen für die Produktionsplanung und -steuerung , 2011 .

[10]  K. Preston White,et al.  An Effective Truncation Heuristic for Bias Reduction in Simulation Output , 1997, Simul..

[11]  Arnoldo C. Hax,et al.  Hierarchical integration of production planning and scheduling , 1973 .

[12]  Marina Gebhard,et al.  Hierarchische Produktionsplanung bei Unsicherheit , 2009 .

[13]  Yue Wu,et al.  Production , Manufacturing and Logistics A robust optimization model for multi-site production planning problem in an uncertain environment , 2007 .

[14]  Wheyming Tina Song,et al.  On the estimation of optimal batch sizes in the analysis of simulation output , 1996 .

[15]  Xinhui Zhang,et al.  A stochastic production planning model under uncertain seasonal demand and market growth , 2011 .

[16]  F. Herrmann,et al.  Ein hierarchisches Planungskonzept zur operativen Produktionsplanung und -steuerung , 2021, Produktionsplanung und -steuerung.

[17]  H. Günther,et al.  Produktion Und Logistik , 1994 .

[18]  Mir-Bahador Aryanezhad,et al.  A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty , 2011 .

[19]  Armin Scholl,et al.  Robuste Planung und Optimierung: Grundlagen, Konzepte und Methoden; experimentelle Untersuchungen , 2000 .

[20]  R. Tyrrell Rockafellar,et al.  Scenarios and Policy Aggregation in Optimization Under Uncertainty , 1991, Math. Oper. Res..

[21]  Bruce W. Schmeiser,et al.  Overlapping batch means: something for nothing? , 1984, WSC '84.

[22]  B. Fleischmann,et al.  Konzeptionelle Grundlagen kapazitätsorientierter PPS-Systeme , 1993 .

[23]  Arianna Alfieri,et al.  Stochastic Programming Models for Manufacturing Applications , 2005 .

[24]  Alf Kimms,et al.  Stability measures for rolling schedules with applications to capacity expansion planning, master production scheduling, and lot sizing , 1998 .