Deriving the correctness of quantum protocols in the probabilistic logic for quantum programs

This paper presents a sound axiomatization for a probabilistic modal dynamic logic of quantum programs. The logic can express whether a state is separable or entangled, information that is local to a subsystem of the whole quantum system, and the probability of positive answers to quantum tests of certain properties. The power of this axiomatization is demonstrated with proofs of properties concerning bases of a finite-dimensional Hilbert space, composite systems, entangled and separable states, and with proofs of the correctness of two probabilistic quantum protocols (the quantum leader election protocol and the BB84 quantum key distribution protocol).

[1]  Amílcar Sernadas,et al.  Weakly complete axiomatization of exogenous quantum propositional logic , 2005, Inf. Comput..

[2]  Jerzy Tiuryn,et al.  Dynamic logic , 2001, SIGA.

[3]  Alexandru Baltag,et al.  LQP: the dynamic logic of quantum information , 2006, Mathematical Structures in Computer Science.

[4]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .

[5]  Robert Goldblatt,et al.  Semantic analysis of orthologic , 1974, J. Philos. Log..

[6]  Jort Bergfeld,et al.  Quantum Probabilistic Dyadic Second-Order Logic , 2013, WoLLIC.

[7]  Ronald Fagin,et al.  A logic for reasoning about probabilities , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[8]  Alexandru Baltag,et al.  Complete Axiomatizations for Quantum Actions , 2005 .

[9]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[10]  Rajagopal Nagarajan,et al.  QMC: A Model Checker for Quantum Systems , 2007, CAV.

[11]  Samson Abramsky,et al.  Categorical quantum mechanics , 2008, 0808.1023.

[12]  Prakash Panangaden,et al.  Quantum weakest preconditions , 2005, Mathematical Structures in Computer Science.

[13]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[14]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[15]  C. A. R. Hoare,et al.  An axiomatic basis for computer programming , 1969, CACM.

[16]  Yde Venema,et al.  Dynamic Logic by David Harel, Dexter Kozen and Jerzy Tiuryn. The MIT Press, Cambridge, Massachusetts. Hardback: ISBN 0–262–08289–6, $50, xv + 459 pages , 2002, Theory and Practice of Logic Programming.

[17]  Prakash Panangaden,et al.  The computational power of the W And GHZ States , 2006, Quantum Inf. Comput..

[18]  Peter Selinger,et al.  Finite Dimensional Hilbert Spaces are Complete for Dagger Compact Closed Categories (Extended Abstract) , 2011, QPL/DCM@ICALP.

[19]  Ronald Fagin,et al.  Reasoning about knowledge and probability , 1988, JACM.

[20]  Yuan Feng,et al.  Verification of Quantum Programs , 2011, Sci. Comput. Program..

[21]  Yuan Feng,et al.  Model checking quantum Markov chains , 2012, J. Comput. Syst. Sci..

[22]  Hirokazu Nishimura,et al.  Gentzen Methods in Quantum Logic , 2009 .

[23]  Lawrence S. Moss,et al.  Editors’ Introduction: The Third Life of Quantum Logic: Quantum Logic Inspired by Quantum Computing , 2013, J. Philos. Log..

[24]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[25]  Karl Svozil,et al.  Quantum Logic , 1998, Discrete mathematics and theoretical computer science.

[26]  Rasmus Ejlers Møgelberg,et al.  Linear-use CPS translations in the Enriched Effect Calculus , 2012, Log. Methods Comput. Sci..

[27]  Alasdair Urquhart,et al.  Temporal Logic , 1971 .

[28]  Jort Bergfeld,et al.  Duality for the Logic of Quantum Actions , 2015, Stud Logica.

[29]  Peter Selinger Finite Dimensional Hilbert Spaces are Complete for Dagger Compact Closed Categories (Extended Abstract) , 2011, Electron. Notes Theor. Comput. Sci..

[30]  A. Baltag,et al.  PLQP & Company: Decidable Logics for Quantum Algorithms , 2014 .

[31]  Keiji Matsumoto,et al.  Exact Quantum Algorithms for the Leader Election Problem , 2005, TOCT.