A Hermite interpolatory subdivision scheme for C2-quintics on the Powell-Sabin 12-split

In order to construct a C 1 -quadratic spline over an arbitrary triangulation, one can split each triangle into 12 subtriangles, resulting in a finer triangulation known as the Powell-Sabin 12-split. It has been shown previously that the corresponding spline surface can be plotted quickly by means of a Hermite subdivision scheme (Dyn and Lyche, 1998). In this paper we introduce a nodal macro-element on the 12-split for the space of quintic splines that are locally C 3 and globally C 2 . For quickly evaluating any such spline, a Hermite subdivision scheme is derived, implemented, and tested in the computer algebra system Sage. Using the available first derivatives for Phong shading, visually appealing plots can be generated after just a couple of refinements.

[1]  Hendrik Speleers,et al.  Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .

[2]  Hans-Peter Seidel,et al.  Multiresolution analysis over triangles, based on quadratic Hermite interpolation , 2000 .

[3]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[4]  Nira Dyn,et al.  A Hermite Subdivision Scheme for the Evaluation of the Powell-Sabin 12-Split Element , 1999 .

[5]  Larry L. Schumaker,et al.  Smooth macro-elements on Powell-Sabin-12 splits , 2005, Math. Comput..

[6]  Rob Stevenson,et al.  Hierarchical Riesz Bases for Hs(Ω), 1 < s < 5/2 , 2005 .

[7]  P. Oswald,et al.  Hierarchical conforming finite element methods for the biharmonic equation , 1992 .

[8]  Larry L. Schumaker,et al.  Surface Compression Using a Space of C1 Cubic Splines with a Hierarchical Basis , 2003, Computing.

[9]  Tom Lyche,et al.  A B-spline-like basis for the Powell-Sabin 12-split based on simplex splines , 2013, Math. Comput..

[10]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[11]  Oleg Davydov,et al.  Refinable C2 piecewise quintic polynomials on Powell-Sabin-12 triangulations , 2013, J. Comput. Appl. Math..

[12]  Peter Alfeld,et al.  Bivariate spline spaces and minimal determining sets , 2000 .

[13]  Rob Stevenson,et al.  Hierarchical Riesz Bases for H s () , 1 < s < 5 , 2005 .

[14]  Larry L. Schumaker,et al.  Macro-elements and stable local bases for splines on Powell-Sabin triangulations , 2003, Math. Comput..

[15]  Tim N. T. Goodman,et al.  Refinable Multivariate Spline Functions , 2006 .

[16]  Adhemar Bultheel,et al.  C 1 hierarchical Riesz bases of Lagrange type on Powell-Sabin triangulations , 2006 .

[17]  Rong-Qing Jia,et al.  C1 spline wavelets on triangulations , 2008, Math. Comput..

[18]  Larry L. Schumaker,et al.  Smooth Macro-Elements Based on Powell–Sabin Triangle Splits , 2002, Adv. Comput. Math..