Low-Rank Tensor Methods with Subspace Correction for Symmetric Eigenvalue Problems
暂无分享,去创建一个
Daniel Kressner | André Uschmajew | Michael Steinlechner | A. Uschmajew | D. Kressner | M. Steinlechner | André Uschmajew
[1] Christoph Schwab,et al. hp-DG-QTT solution of high-dimensional degenerate diffusion equations , 2012 .
[2] Robert E. Mahony,et al. A Grassmann-Rayleigh Quotient Iteration for Computing Invariant Subspaces , 2002, SIAM Rev..
[3] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[4] Andrew V. Knyazev,et al. Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..
[5] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[6] A. Sameh,et al. The trace minimization method for the symmetric generalized eigenvalue problem , 2000 .
[7] Daniel Kressner,et al. Preconditioned Low-Rank Methods for High-Dimensional Elliptic PDE Eigenvalue Problems , 2011, Comput. Methods Appl. Math..
[8] Markus Weimar. Breaking the curse of dimensionality , 2015 .
[9] Thomas Huckle,et al. Subspace Iteration Methods in terms of Matrix Product States , 2012 .
[10] F. Verstraete,et al. Variational numerical renormalization group: bridging the gap between NRG and density matrix renormalization group. , 2011, Physical review letters.
[11] S. White. Density matrix renormalization group algorithms with a single center site , 2005, cond-mat/0508709.
[12] О. С. Лебедева. Tensor conjugate-gradient-type method for Rayleigh quotient minimization in block QTT format , 2011 .
[13] Gregory Beylkin,et al. Multiresolution quantum chemistry: basic theory and initial applications. , 2004, The Journal of chemical physics.
[14] Boris N. Khoromskij,et al. Use of tensor formats in elliptic eigenvalue problems , 2012, Numer. Linear Algebra Appl..
[15] White,et al. Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.
[16] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[17] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[18] Mark Coppejans,et al. Breaking the Curse of Dimensionality , 2000 .
[19] Lars Grasedyck,et al. Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..
[20] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[21] Boris N. Khoromskij,et al. Quantics-TT Collocation Approximation of Parameter-Dependent and Stochastic Elliptic PDEs , 2010, Comput. Methods Appl. Math..
[22] Daniel Jean Baye,et al. Generalised meshes for quantum mechanical problems , 1986 .
[23] Boris N. Khoromskij,et al. Computation of extreme eigenvalues in higher dimensions using block tensor train format , 2013, Comput. Phys. Commun..
[24] VLADIMIR A. KAZEEV,et al. Low-Rank Explicit QTT Representation of the Laplace Operator and Its Inverse , 2012, SIAM J. Matrix Anal. Appl..
[25] Andrew V. Knyazev,et al. A subspace preconditioning algorithm for eigenvector/eigenvalue computation , 1995, Adv. Comput. Math..
[26] U. Manthe,et al. The multi-configurational time-dependent Hartree approach , 1990 .
[27] Klaus Neymeyr,et al. A geometric theory for preconditioned inverse iteration applied to a subspace , 2002, Math. Comput..
[28] Boris N. Khoromskij,et al. Numerical Solution of the Hartree - Fock Equation in Multilevel Tensor-Structured Format , 2011, SIAM J. Sci. Comput..
[29] Hans-Dieter Meyer,et al. A numerical study on the performance of the multiconfiguration time-dependent Hartree method for density operators , 2000 .
[30] U. Schollwoeck. The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.
[31] Eugene E. Tyrtyshnikov,et al. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..
[32] B. Khoromskij,et al. DMRG+QTT approach to computation of the ground state for the molecular Schrödinger operator , 2010 .
[33] Reinhold Schneider,et al. The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..
[34] S. V. Dolgov,et al. ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .
[35] Erwan Faou,et al. Computing Semiclassical Quantum Dynamics with Hagedorn Wavepackets , 2009, SIAM J. Sci. Comput..
[36] Yvon Maday,et al. Periodic Schrödinger Operators with Local Defects and Spectral Pollution , 2011, SIAM J. Numer. Anal..
[37] Lars Grasedyck,et al. Existence and Computation of Low Kronecker-Rank Approximations for Large Linear Systems of Tensor Product Structure , 2004, Computing.
[38] Robert E. Mahony,et al. Optimization Algorithms on Matrix Manifolds , 2007 .
[39] W. Hackbusch,et al. A New Scheme for the Tensor Representation , 2009 .
[40] Venera Khoromskaia. Black-Box Hartree–Fock Solver by Tensor Numerical Methods , 2014, Comput. Methods Appl. Math..
[41] Е Е Тыртышников,et al. Low-rank tensor structure of solutions to elliptic problems with jumping coefficients , 2012 .
[42] Ahmed H. Sameh,et al. Trace Minimization Algorithm for the Generalized Eigenvalue Problem , 1982, PPSC.
[43] F. Verstraete,et al. Variational matrix-product-state approach to quantum impurity models , 2005, cond-mat/0504305.
[44] W. Marsden. I and J , 2012 .
[45] André Uschmajew,et al. On Local Convergence of Alternating Schemes for Optimization of Convex Problems in the Tensor Train Format , 2013, SIAM J. Numer. Anal..
[46] S. V. Dolgov,et al. Corrected One-Site Density Matrix Renormalization Group and Alternating Minimal Energy Algorithm , 2013, ENUMATH.