Low-Rank Tensor Methods with Subspace Correction for Symmetric Eigenvalue Problems

We consider the solution of large-scale symmetric eigenvalue problems for which it is known that the eigenvectors admit a low-rank tensor approximation. Such problems arise, for example, from the discretization of high-dimensional elliptic PDE eigenvalue problems or in strongly correlated spin systems. Our methods are built on imposing low-rank (block) tensor train (TT) structure on the trace minimization characterization of the eigenvalues. The common approach of alternating optimization is combined with an enrichment of the TT cores by (preconditioned) gradients, as recently proposed by Dolgov and Savostyanov for linear systems. This can equivalently be viewed as a subspace correction technique. Several numerical experiments demonstrate the performance gains from using this technique.

[1]  Christoph Schwab,et al.  hp-DG-QTT solution of high-dimensional degenerate diffusion equations , 2012 .

[2]  Robert E. Mahony,et al.  A Grassmann-Rayleigh Quotient Iteration for Computing Invariant Subspaces , 2002, SIAM Rev..

[3]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[4]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[5]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[6]  A. Sameh,et al.  The trace minimization method for the symmetric generalized eigenvalue problem , 2000 .

[7]  Daniel Kressner,et al.  Preconditioned Low-Rank Methods for High-Dimensional Elliptic PDE Eigenvalue Problems , 2011, Comput. Methods Appl. Math..

[8]  Markus Weimar Breaking the curse of dimensionality , 2015 .

[9]  Thomas Huckle,et al.  Subspace Iteration Methods in terms of Matrix Product States , 2012 .

[10]  F. Verstraete,et al.  Variational numerical renormalization group: bridging the gap between NRG and density matrix renormalization group. , 2011, Physical review letters.

[11]  S. White Density matrix renormalization group algorithms with a single center site , 2005, cond-mat/0508709.

[12]  О. С. Лебедева Tensor conjugate-gradient-type method for Rayleigh quotient minimization in block QTT format , 2011 .

[13]  Gregory Beylkin,et al.  Multiresolution quantum chemistry: basic theory and initial applications. , 2004, The Journal of chemical physics.

[14]  Boris N. Khoromskij,et al.  Use of tensor formats in elliptic eigenvalue problems , 2012, Numer. Linear Algebra Appl..

[15]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[16]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[17]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[18]  Mark Coppejans,et al.  Breaking the Curse of Dimensionality , 2000 .

[19]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[20]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[21]  Boris N. Khoromskij,et al.  Quantics-TT Collocation Approximation of Parameter-Dependent and Stochastic Elliptic PDEs , 2010, Comput. Methods Appl. Math..

[22]  Daniel Jean Baye,et al.  Generalised meshes for quantum mechanical problems , 1986 .

[23]  Boris N. Khoromskij,et al.  Computation of extreme eigenvalues in higher dimensions using block tensor train format , 2013, Comput. Phys. Commun..

[24]  VLADIMIR A. KAZEEV,et al.  Low-Rank Explicit QTT Representation of the Laplace Operator and Its Inverse , 2012, SIAM J. Matrix Anal. Appl..

[25]  Andrew V. Knyazev,et al.  A subspace preconditioning algorithm for eigenvector/eigenvalue computation , 1995, Adv. Comput. Math..

[26]  U. Manthe,et al.  The multi-configurational time-dependent Hartree approach , 1990 .

[27]  Klaus Neymeyr,et al.  A geometric theory for preconditioned inverse iteration applied to a subspace , 2002, Math. Comput..

[28]  Boris N. Khoromskij,et al.  Numerical Solution of the Hartree - Fock Equation in Multilevel Tensor-Structured Format , 2011, SIAM J. Sci. Comput..

[29]  Hans-Dieter Meyer,et al.  A numerical study on the performance of the multiconfiguration time-dependent Hartree method for density operators , 2000 .

[30]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[31]  Eugene E. Tyrtyshnikov,et al.  Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..

[32]  B. Khoromskij,et al.  DMRG+QTT approach to computation of the ground state for the molecular Schrödinger operator , 2010 .

[33]  Reinhold Schneider,et al.  The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..

[34]  S. V. Dolgov,et al.  ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .

[35]  Erwan Faou,et al.  Computing Semiclassical Quantum Dynamics with Hagedorn Wavepackets , 2009, SIAM J. Sci. Comput..

[36]  Yvon Maday,et al.  Periodic Schrödinger Operators with Local Defects and Spectral Pollution , 2011, SIAM J. Numer. Anal..

[37]  Lars Grasedyck,et al.  Existence and Computation of Low Kronecker-Rank Approximations for Large Linear Systems of Tensor Product Structure , 2004, Computing.

[38]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[39]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[40]  Venera Khoromskaia Black-Box Hartree–Fock Solver by Tensor Numerical Methods , 2014, Comput. Methods Appl. Math..

[41]  Е Е Тыртышников,et al.  Low-rank tensor structure of solutions to elliptic problems with jumping coefficients , 2012 .

[42]  Ahmed H. Sameh,et al.  Trace Minimization Algorithm for the Generalized Eigenvalue Problem , 1982, PPSC.

[43]  F. Verstraete,et al.  Variational matrix-product-state approach to quantum impurity models , 2005, cond-mat/0504305.

[44]  W. Marsden I and J , 2012 .

[45]  André Uschmajew,et al.  On Local Convergence of Alternating Schemes for Optimization of Convex Problems in the Tensor Train Format , 2013, SIAM J. Numer. Anal..

[46]  S. V. Dolgov,et al.  Corrected One-Site Density Matrix Renormalization Group and Alternating Minimal Energy Algorithm , 2013, ENUMATH.