A practical guide to Prabhakar fractional calculus
暂无分享,去创建一个
Federico Polito | Roberto Garrappa | Francesco Mainardi | Andrea Giusti | Marina Popolizio | Roberto Garra | Ivano Colombaro | F. Mainardi | F. Polito | M. Popolizio | R. Garra | A. Giusti | Ivano Colombaro | R. Garrappa | I. Colombaro
[1] Francesco Mainardi,et al. On the propagation of transient waves in a viscoelastic Bessel medium , 2016 .
[2] F. Polito. Studies on generalized Yule models , 2018, Modern Stochastics: Theory and Applications.
[3] Enrico Scalas,et al. A renewal process of Mittag-Leffler type , 2004 .
[4] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[5] F. Mainardi,et al. Creep, relaxation and viscosity properties for basic fractional models in rheology , 2011, 1110.3400.
[6] Aleksander Stanislavsky,et al. The stochastic nature of complexity evolution in the fractional systems , 2007, 1111.3239.
[7] M. M. Djrbashian,et al. Harmonic analysis and boundary value problems in the complex domain , 1993 .
[8] A. Chechkin,et al. Generalized diffusion-wave equation with memory kernel , 2018, Journal of Physics A: Mathematical and Theoretical.
[9] A. M. Mathai,et al. On the H -Function With Applications , 2010 .
[10] Francesco Mainardi,et al. On infinite series concerning zeros of Bessel functions of the first kind , 2016, 1601.00563.
[11] A. P. Riascos,et al. Continuous time random walk and diffusion with generalized fractional Poisson process , 2019, Physica A: Statistical Mechanics and its Applications.
[12] N. Ford,et al. Analysis of Fractional Differential Equations , 2002 .
[13] Francesco Mainardi,et al. A class of linear viscoelastic models based on Bessel functions , 2016, 1602.04664.
[14] G. H. Hardy,et al. On the Theory of Linear Integral Equations , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.
[15] Photocatalytic degradation as Davidson–Cole relaxation in time domain , 2019, Journal of Advanced Dielectrics.
[16] Francesco Mainardi,et al. A dynamic viscoelastic analogy for fluid-filled elastic tubes , 2015, 1505.06694.
[17] S. Havriliak,et al. On the equivalence of dielectric and mechanical dispersions in some polymers; e.g. poly(n-octyl methacrylate)☆ , 1969 .
[18] Francesco Mainardi,et al. On Mittag-Leffler-type functions in fractional evolution processes , 2000 .
[19] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[20] I. Podlubny. Fractional differential equations , 1998 .
[21] T. MacRobert. Higher Transcendental Functions , 1955, Nature.
[22] Federico Polito,et al. Fractional Diffusion-Telegraph Equations and their Associated Stochastic Solutions , 2013, 1307.1696.
[23] R. Cole,et al. Dielectric Relaxation in Glycerol, Propylene Glycol, and n‐Propanol , 1951 .
[24] Andrea Giusti. General fractional calculus and Prabhakar's theory , 2020, Commun. Nonlinear Sci. Numer. Simul..
[25] N. Balakrishnan,et al. A class of weighted Poisson processes , 2008 .
[26] R. Gorenflo,et al. Time-fractional derivatives in relaxation processes: a tutorial survey , 2008, 0801.4914.
[27] A. I. Saichev,et al. Fractional Poisson Law , 2000 .
[28] K. Cole. ELECTRIC CONDUCTANCE OF BIOLOGICAL SYSTEMS , 1933 .
[29] Zhili Lin. On the FDTD Formulations for Biological Tissues With Cole–Cole Dispersion , 2010, IEEE Microwave and Wireless Components Letters.
[30] Karina Weron,et al. HAVRILIAK-NEGAMI RESPONSE IN THE FRAMEWORK OF THE CONTINUOUS-TIME RANDOM WALK ∗ , 2005 .
[31] Karina Weron,et al. Numerical scheme for calculating of the fractional two-power relaxation laws in time-domain of measurements , 2012, Comput. Phys. Commun..
[32] Enrico Scalas,et al. Full characterization of the fractional Poisson process , 2011, 1104.4234.
[33] A. P. Riascos,et al. Generalized fractional Poisson process and related stochastic dynamics , 2019, Fractional Calculus and Applied Analysis.
[34] Andrea Giusti,et al. A comment on some new definitions of fractional derivative , 2017, Nonlinear Dynamics.
[35] Virginia Kiryakova,et al. Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus , 2000 .
[36] E. Montroll,et al. Random Walks on Lattices. II , 1965 .
[37] Trifce Sandev,et al. Fractional Equations and Models , 2019, Developments in Mathematics.
[38] C. Lubich. Convolution Quadrature Revisited , 2004 .
[39] Virginia Kiryakova,et al. MULTIINDEX MITTAG-LEFFLER FUNCTIONS, RELATED GELFOND-LEONTIEV OPERATORS AND LAPLACE TYPE INTEGRAL TRANSFORMS ⁄ , 1999 .
[40] E. Hille,et al. On the Theory of Linear Integral Equations. II , 1930 .
[41] N. Laskin. Fractional Poisson process , 2003 .
[42] C. Lubich. Convolution quadrature and discretized operational calculus. II , 1988 .
[43] E. M. Wright,et al. The asymptotic expansion of integral functions defined by Taylor series , 1940, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[44] B. Braaksma,et al. Asymptotic expansions and analytic continuations for a class of Barnes-integrals , 1964 .
[45] H. Chamati,et al. Generalized Mittag–Leffler functions in the theory of finite-size scaling for systems with strong anisotropy and/or long-range interaction , 2006 .
[46] R. K. Saxena,et al. Generalized mittag-leffler function and generalized fractional calculus operators , 2004 .
[47] Leonard A. Dissado,et al. Debye and non-Debye relaxation , 1985 .
[48] Boris Gnedenko,et al. Introduction to queueing theory , 1968 .
[49] Rudolf Hilfer,et al. Experimental evidence for fractional time evolution in glass forming materials , 2002 .
[50] Trifce Sandev,et al. Models for characterizing the transition among anomalous diffusions with different diffusion exponents , 2018, Journal of Physics A: Mathematical and Theoretical.
[51] Gorjan Alagic,et al. #p , 2019, Quantum information & computation.
[52] J. Paneva-Konovska. On the multi-index (3m-parametric) Mittag-Leffler functions, fractional calculus relations and series convergence , 2013 .
[53] J. Trujillo,et al. Differential equations of fractional order:methods results and problem —I , 2001 .
[54] Alexander M. Krägeloh. Two families of functions related to the fractional powers of generators of strongly continuous contraction semigroups , 2003 .
[55] Trifce Sandev,et al. Finite-velocity diffusion on a comb , 2018, EPL (Europhysics Letters).
[56] A. M. Mathai,et al. The H-Function: Theory and Applications , 2009 .
[57] K. Diethelm. Mittag-Leffler Functions , 2010 .
[58] K. Diethelm. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .
[60] J. Klafter,et al. First Steps in Random Walks: From Tools to Applications , 2011 .
[61] C. T. White,et al. On the origin of the universal dielectric response in condensed matter , 1979, Nature.
[62] Piezo-catalytic degradation of Havriliak–Negami type , 2019, Journal of Advanced Dielectrics.
[63] A. Wiman. Über den Fundamentalsatz in der Teorie der FunktionenEa(x) , 1905 .
[64] T. R. Prabhakar. A SINGULAR INTEGRAL EQUATION WITH A GENERALIZED MITTAG LEFFLER FUNCTION IN THE KERNEL , 1971 .
[65] Arak M. Mathai,et al. Mittag-Leffler Functions and Their Applications , 2009, J. Appl. Math..
[66] Trifce Sandev,et al. Generalized Langevin Equation and the Prabhakar Derivative , 2017 .
[67] Harry Pollard,et al. The completely monotonic character of the Mittag-Leffler function $E_a \left( { - x} \right)$ , 1948 .
[68] C. Macci,et al. Large deviations for fractional Poisson processes , 2012, 1204.1446.
[69] B. Gross. Ladder structures for representation of viscoelastic systems. II , 1956 .
[70] M. Gurtin,et al. On the linear theory of viscoelasticity , 1962 .
[71] Dispersion and Absorption in Dielectrics 1 , 2022 .
[72] Guido Maione,et al. Fractional Prabhakar Derivative and Applications in Anomalous Dielectrics: A Numerical Approach , 2017 .
[73] S. Havriliak,et al. A complex plane analysis of α‐dispersions in some polymer systems , 2007 .
[74] B. Gross,et al. On Creep and Relaxation , 1947 .
[75] S. Havriliak,et al. Results from an unbiased analysis of nearly 1000 sets of relaxation data , 1994 .
[76] A. Hanyga,et al. On a Mathematical Framework for the Constitutive Equations of Anisotropic Dielectric Relaxation , 2008 .
[77] Hilfer,et al. Fractional master equations and fractal time random walks. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[78] Federico Polito,et al. Hilfer-Prabhakar derivatives and some applications , 2014, Appl. Math. Comput..
[79] Francesco Mainardi,et al. George William Scott Blair – the pioneer of fractional calculus in rheology , 2014, 1404.3295.
[80] Hari M. Srivastava,et al. Laplace type integral expressions for a certain three-parameter family of generalized Mittag-Leffler functions with applications involving complete monotonicity , 2014, J. Frankl. Inst..
[81] A. Stanislavsky,et al. Transient anomalous diffusion with Prabhakar-type memory. , 2018, The Journal of chemical physics.
[82] Anatoly A. Kilbas,et al. Solution of Volterra Integro-Differential Equations with Generalized Mittag-Leffler Function in the Kernels , 2002 .
[83] D. Owen. Handbook of Mathematical Functions with Formulas , 1965 .
[84] Matthew F. Causley,et al. Incorporating the Havriliak-Negami dielectric model in the FD-TD method , 2011, J. Comput. Phys..
[85] Trifce Sandev,et al. Asymptotic behavior of a harmonic oscillator driven by a generalized Mittag-Leffler noise , 2010 .
[86] J. Paneva-Konovska. Convergence of series in three parametric Mittag-Leffler functions , 2014 .
[87] Francesco Mainardi,et al. On transient waves in linear viscoelasticity , 2017 .
[88] C. Lubich. Convolution quadrature and discretized operational calculus. I , 1988 .
[89] Andrea Giusti,et al. Prabhakar-like fractional viscoelasticity , 2017, Commun. Nonlinear Sci. Numer. Simul..
[90] E. Capelas de Oliveira,et al. Solution of the fractional Langevin equation and the Mittag–Leffler functions , 2009 .
[91] V. Kiryakova,et al. The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus , 2010, Comput. Math. Appl..
[92] P. Mieghem. The Mittag-Leffler function , 2020, 2005.13330.
[93] Federico Polito,et al. Some properties of Prabhakar-type fractional calculus operators , 2015, 1508.03224.
[94] Z. Tomovski,et al. Probability distribution built by Prabhakar function. Related Turán and Laguerre inequalities , 2016, 1605.01981.
[95] Trifce Sandev,et al. Langevin equation for a free particle driven by power law type of noises , 2014 .
[96] E. M. Wright. The Asymptotic Expansion of the Generalised Hypergeometric Function , 1952 .
[97] A. Pipkin,et al. Lectures on Viscoelasticity Theory , 1972 .
[98] R. Cole,et al. Dielectric Relaxation in Glycerine , 1950 .
[99] E. C. Oliveira,et al. On some fractional Green’s functions , 2009 .
[100] Roberto Garrappa,et al. Numerical Evaluation of Two and Three Parameter Mittag-Leffler Functions , 2015, SIAM J. Numer. Anal..
[101] Roberto Garrappa,et al. Evaluation of generalized Mittag–Leffler functions on the real line , 2013, Adv. Comput. Math..
[102] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[103] Holger Kantz,et al. Distributed-order diffusion equations and multifractality: Models and solutions. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.
[104] H. Konno,et al. Stochastic modeling for neural spiking events based on fractional superstatistical Poisson process , 2018 .
[105] E. Montroll. Random walks on lattices , 1969 .
[106] V. V. Novikov,et al. Anomalous relaxation in dielectrics. Equations with fractional derivatives , 2005 .
[107] G. Dattoli,et al. The Havriliak–Negami relaxation and its relatives: the response, relaxation and probability density functions , 2016, 1611.06433.
[108] R. Gorenflo,et al. Mittag-Leffler Functions, Related Topics and Applications , 2014, Springer Monographs in Mathematics.
[109] E. M. Wright,et al. The Asymptotic Expansion of the Generalized Hypergeometric Function , 1935 .
[110] K. Miller,et al. An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .
[111] B. Gross,et al. ON CREEP AND RELAXATION. III , 1948 .
[112] Roberto Garrappa,et al. The Prabhakar or three parameter Mittag-Leffler function: Theory and application , 2017, Commun. Nonlinear Sci. Numer. Simul..
[113] L. Beghin,et al. Fractional Poisson processes and related planar random motions , 2009 .
[114] Roberto Garrappa,et al. Grünwald-Letnikov operators for fractional relaxation in Havriliak-Negami models , 2016, Commun. Nonlinear Sci. Numer. Simul..
[115] Roberto Garrappa,et al. Computing the Matrix Mittag-Leffler Function with Applications to Fractional Calculus , 2018, Journal of Scientific Computing.
[116] R. Hilfer,et al. H-function representations for stretched exponential relaxation and non-Debye susceptibilities in glassy systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[117] A. Jonscher. Dielectric relaxation in solids , 1983 .
[118] J. Trujillo,et al. Differential Equations of Fractional Order: Methods, Results and Problems. II , 2002 .
[119] M. T. Cicero. FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .
[120] F. Mainardi,et al. Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics , 2011, 1106.1761.
[121] D. Fox. Creep , 2019, Deformation and Evolution of Life in Crystalline Materials.
[122] R. B. Paris,et al. Exponentially small expansions in the asymptotics of the Wright function , 2010, J. Comput. Appl. Math..
[123] S. Havriliak,et al. A complex plane representation of dielectric and mechanical relaxation processes in some polymers , 1967 .
[124] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[125] Dazhi Zhao,et al. Anomalous relaxation model based on the fractional derivative with a Prabhakar-like kernel , 2019, Zeitschrift für angewandte Mathematik und Physik.
[126] F. Mainardi. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .
[127] K. Cole,et al. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .
[128] Vasundara V. Varadan,et al. Variation of Cole-Cole model parameters with the complex permittivity of biological tissues , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.
[129] Bernhard Gross. Electrical analogs for viscoelastic systems , 1956 .
[130] A. Chechkin,et al. Generalised Diffusion and Wave Equations: Recent Advances , 2019, 1903.01166.
[131] M. Caputo,et al. A new dissipation model based on memory mechanism , 1971 .
[132] H. M. Srivastava,et al. Fractional and operational calculus with generalized fractional derivative operators and Mittag–Leffler type functions , 2010 .
[133] Hari M. Srivastava,et al. Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel , 2009, Appl. Math. Comput..
[134] 장윤희,et al. Y. , 2003, Industrial and Labor Relations Terms.
[135] S. Reich,et al. Dielectric relaxation , 1977, Nature.
[136] Richard B. Paris. Asymptotics of the special functions of fractional calculus , 2019, Basic Theory.
[137] Ram K. Saxena,et al. Exact solutions of triple-order time-fractional differential equations for anomalous relaxation and diffusion I: The accelerating case , 2011 .
[138] A. M. Mathai,et al. Reaction-Diffusion Systems and Nonlinear Waves , 2006 .
[139] K. Górska,et al. Composition law for the Cole-Cole relaxation and ensuing evolution equations , 2018, Physics Letters A.
[140] Luisa Beghin,et al. Poisson-type processes governed by fractional and higher-order recursive differential equations , 2009, 0910.5855.
[141] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.
[142] Anatoly N. Kochubei,et al. General Fractional Calculus, Evolution Equations, and Renewal Processes , 2011, 1105.1239.
[143] Francesco Mainardi,et al. Linear models of dissipation in anelastic solids , 1971 .
[144] A. Horzela,et al. A note on the article “Anomalous relaxation model based on the fractional derivative with a Prabhakar-like kernel” [Z. Angew. Math. Phys. (2019) 70: 42] , 2019, Zeitschrift für angewandte Mathematik und Physik.
[145] G. Fitzgerald,et al. 'I. , 2019, Australian journal of primary health.
[146] Federico Polito,et al. Renewal processes based on generalized Mittag-Leffler waiting times , 2013, Commun. Nonlinear Sci. Numer. Simul..
[147] Overconvergence of series in generalized mittag-leffler functions , 2017 .
[148] R. Nigmatullin,et al. The justified data-curve fitting approach: recognition of the new type of kinetic equations in fractional derivatives from analysis of raw dielectric data , 2003 .
[149] A. K. Jonscher,et al. The ‘universal’ dielectric response , 1977, Nature.
[150] A. Kochubei. General fractional calculus , 2019, Basic Theory.
[151] K. Cole,et al. Dispersion and Absorption in Dielectrics II. Direct Current Characteristics , 1942 .
[152] Francesco Mainardi,et al. On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics , 2015, J. Comput. Phys..
[153] M. Meerschaert,et al. The Fractional Poisson Process and the Inverse Stable Subordinator , 2010, 1007.5051.
[154] J. H. Barrett,et al. Differential Equations of Non-Integer Order , 1954, Canadian Journal of Mathematics.
[155] A. Chechkin,et al. From continuous time random walks to the generalized diffusion equation , 2018 .
[156] F. Mainardi,et al. Models of dielectric relaxation based on completely monotone functions , 2016, 1611.04028.
[157] Silvia Vitali,et al. Storage and Dissipation of Energy in Prabhakar Viscoelasticity , 2017, 1712.09419.
[158] Lloyd N. Trefethen,et al. Parabolic and hyperbolic contours for computing the Bromwich integral , 2007, Math. Comput..
[159] V. Uchaikin. Relaxation Processes and Fractional Differential Equations , 2003 .
[160] H. Kantz,et al. Diffusion and Fokker-Planck-Smoluchowski Equations with Generalized Memory Kernel , 2015 .
[161] F. Mainardi,et al. for anomalous relaxation in dielectrics , 2011 .
[162] R. Gorenflo,et al. Multi-index Mittag-Leffler Functions , 2014 .
[163] Guido Maione,et al. A novel FDTD formulation based on fractional derivatives for dispersive Havriliak-Negami media , 2015, Signal Process..
[164] Raoul R. Nigmatullin,et al. Cole-Davidson dielectric relaxation as a self-similar relaxation process , 1997 .