Sigma-Delta quantization of sub-Gaussian frame expansions and its application to compressed sensing

Suppose that the collection $\{e_i\}_{i=1}^m$ forms a frame for $\R^k$, where each entry of the vector $e_i$ is a sub-Gaussian random variable. We consider expansions in such a frame, which are then quantized using a Sigma-Delta scheme. We show that an arbitrary signal in $\R^k$ can be recovered from its quantized frame coefficients up to an error which decays root-exponentially in the oversampling rate $m/k$. Here the quantization scheme is assumed to be chosen appropriately depending on the oversampling rate and the quantization alphabet can be coarse. The result holds with high probability on the draw of the frame uniformly for all signals. The crux of the argument is a bound on the extreme singular values of the product of a deterministic matrix and a sub-Gaussian frame. For fine quantization alphabets, we leverage this bound to show polynomial error decay in the context of compressed sensing. Our results extend previous results for structured deterministic frame expansions and Gaussian compressed sensing measurements.

[1]  T. Blumensath,et al.  Theory and Applications , 2011 .

[2]  M. Rudelson,et al.  Hanson-Wright inequality and sub-gaussian concentration , 2013 .

[3]  Yaniv Plan,et al.  One-bit compressed sensing with non-Gaussian measurements , 2012, ArXiv.

[4]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[5]  F. T. Wright,et al.  A Bound on Tail Probabilities for Quadratic Forms in Independent Random Variables , 1971 .

[6]  C. S. Güntürk One‐bit sigma‐delta quantization with exponential accuracy , 2003 .

[7]  J. Benedetto,et al.  Second-order Sigma–Delta (ΣΔ) quantization of finite frame expansions , 2006 .

[8]  Rachel Ward,et al.  Lower bounds for the error decay incurred by coarse quantization schemes , 2010, ArXiv.

[9]  Holger Rauhut,et al.  Suprema of Chaos Processes and the Restricted Isometry Property , 2012, ArXiv.

[10]  A. Robert Calderbank,et al.  The pros and cons of democracy , 2002, IEEE Trans. Inf. Theory.

[11]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[12]  Bernhard G. Bodmann,et al.  Smooth Frame-Path Termination for Higher Order Sigma-Delta Quantization , 2007 .

[13]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[14]  慧 廣瀬 A Mathematical Introduction to Compressive Sensing , 2015 .

[15]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[16]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[17]  Yaniv Plan,et al.  One‐Bit Compressed Sensing by Linear Programming , 2011, ArXiv.

[18]  Hiroshi Inose,et al.  A unity bit coding method by negative feedback , 1963 .

[19]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[20]  Tong Zhang,et al.  Sparse Recovery With Orthogonal Matching Pursuit Under RIP , 2010, IEEE Transactions on Information Theory.

[21]  Özgür Yılmaz,et al.  Sobolev Duals in Frame Theory and Sigma-Delta Quantization , 2010 .

[22]  Rayan Saab,et al.  Root-Exponential Accuracy for Coarse Quantization of Finite Frame Expansions , 2012, IEEE Transactions on Information Theory.

[23]  Rayan Saab,et al.  Sobolev Duals for Random Frames and ΣΔ Quantization of Compressed Sensing Measurements , 2013, Found. Comput. Math..

[24]  John J. Benedetto,et al.  Sigma-delta quantization and finite frames , 2004, ICASSP.

[25]  John J. Benedetto,et al.  Sigma-delta (/spl Sigma//spl Delta/) quantization and finite frames , 2006, IEEE Trans. Inf. Theory.

[26]  Rayan Saab,et al.  Quantization and Finite Frames , 2013 .

[27]  Özgür Yilmaz,et al.  Alternative dual frames for digital-to-analog conversion in sigma–delta quantization , 2010, Adv. Comput. Math..

[28]  Laurent Jacques,et al.  Dequantizing Compressed Sensing: When Oversampling and Non-Gaussian Constraints Combine , 2009, IEEE Transactions on Information Theory.

[29]  Vivek K. Goyal,et al.  Quantized Overcomplete Expansions in IRN: Analysis, Synthesis, and Algorithms , 1998, IEEE Trans. Inf. Theory.

[30]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[31]  Felix Krahmer,et al.  An optimal family of exponentially accurate one‐bit Sigma‐Delta quantization schemes , 2010, ArXiv.

[32]  I. Daubechies,et al.  Approximating a bandlimited function using very coarsely quantized data: A family of stable sigma-delta modulators of arbitrary order , 2003 .

[33]  Laurent Jacques,et al.  Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors , 2011, IEEE Transactions on Information Theory.

[34]  Peter G. Casazza,et al.  Finite Frames: Theory and Applications , 2012 .