A Census of Small Latin Hypercubes
暂无分享,去创建一个
[1] Victor Zinoviev,et al. Binary Extended Perfect Codes of Length 16 by the Generalized Concatenated Construction , 2002, Probl. Inf. Transm..
[2] M. Hall. An existence theorem for latin squares , 1945 .
[3] Allan B. Cruse. On the Finite Completion of Partial Latin Cubes , 1974, J. Comb. Theory, Ser. A.
[4] Luc Teirlinck. Generalized idempotent orthogonal arrays , 1990 .
[5] H. Wilf. generatingfunctionology: Third Edition , 1990 .
[6] J. Dénes,et al. Latin squares and their applications , 1974 .
[7] S. C. Pearce,et al. Orthogonal designs for three-dimensional experiments , 1973 .
[8] Gary L. Mullen,et al. LATIN CUBES AND HYPERCUBES OF PRIME ORDER , 1985 .
[9] Gary L. Mullen,et al. Latin cubes of order >=5 , 1980, Discret. Math..
[10] Ian M. Wanless,et al. On the Number of Latin Squares , 2005, 0909.2101.
[11] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[12] Charles C. Lindner. A Finite Partial Idempotent Latin Cube Can Be Embedded in a Finite Idempotent Latin Cube , 1976, J. Comb. Theory, Ser. A.
[13] Martin Kochol,et al. Relatively narrow latin parallelpipeds that cannot be extended to a latin cube , 1995, Ars Comb..
[14] Denis Krotov,et al. Asymptotics for the number of n-quasigroups of order 4 , 2006 .
[15] Jonathan Cutler,et al. Latin Squares with Forbidden Entries , 2006, Electron. J. Comb..
[16] G. Mullen,et al. Discrete Mathematics Using Latin Squares , 1998, The Mathematical Gazette.
[17] B. McKay,et al. Small latin squares, quasigroups, and loops , 2007 .
[18] Katherine Heinrich. Prolongation in m-Dimensional Permutation Cubes , 1982 .