Large sample inference in random coefficient regression models

Random coefficient regression models have been used t odescribe repeated measures on members of a sample of n in dividuals . Previous researchers have proposed methods of estimating the mean parameters of such models. Their methods require that eachindividual be observed under the same settings of independent variablesor , lesss stringently , that the number of observations ,r , on each individual be the same. Under the latter restriction ,estimators of mean regression parameters exist which are consist ent as both r→∞and n→∞ and efficient as r→∞, and large sample ( r large ) tests of mean parameters are available . These results are easily extended to the case where not a11 individuals are observed an equal number of times provided limit are taken as min(r) → ∞. Existing methods of inference , however, are not justified by the current literature when n is large and r is small, as is the case i n many bio-medical applications . The primary con tribution of the current paper is a derivation of the asymptot...