Evolution Equations in Geometry
暂无分享,去创建一个
[1] J. York,et al. Kinematics and dynamics of general relativity , 1979 .
[2] S. Angenent,et al. Degenerate neckpinches in mean curvature flow. , 1997 .
[3] Shing-Tung Yau,et al. On the proof of the positive mass conjecture in general relativity , 1979 .
[4] M. Grayson. Shortening embedded curves , 1989 .
[5] RECENT DEVELOPMENTS ON THE RICCI FLOW , 1998, math/9811123.
[6] Diffeomorphism invariant integrable field theories and hypersurface motions in Riemannian manifolds , 1995, hep-th/9512001.
[7] J. Shatah,et al. Geometric wave equations , 1998 .
[8] G. Huisken,et al. The Riemannian Penrose inequality , 1997 .
[9] R. Schoen. Conformal deformation of a Riemannian metric to constant scalar curvature , 1984 .
[10] M. Heusler. Black Hole Uniqueness Theorems , 1996 .
[11] Wan-Xiong Shi. Deforming the metric on complete Riemannian manifolds , 1989 .
[12] H. Bray. PROOF OF THE RIEMANNIAN PENROSE INEQUALITY USING THE POSITIVE MASS THEOREM , 2001 .
[13] P. Chruściel. Semi-global existence and convergence of solutions of the Robinson-Trautman (2-dimensional Calabi) equation , 1991 .
[14] Gerhard Huisken,et al. Geometric evolution equations for hypersurfaces , 1999 .
[15] G. Huisken,et al. The inverse mean curvature flow and the Riemannian Penrose Inequality , 2001 .
[16] B. Andrews. Contraction of convex hypersurfaces in Riemannian spaces , 1994 .
[17] Robert V. Kohn,et al. Refined asymptotics for the blowup of ut –Δu = up , 1992 .
[18] Ben Andrews,et al. Contraction of convex hypersurfaces by their affine normal , 1996 .
[19] G. Huisken,et al. Convexity estimates for mean curvature flow and singularities of mean convex surfaces , 1999 .
[20] H. Friedrich. On the existence of analytic null asymptotically flat solutions of Einstein’s vacuum field equations , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[21] Stefan Müller,et al. Global existence of wave maps in $1 + 2$ dimensions with finite energy data , 1996 .
[22] B. White. Partial regularity of mean-convex hypersurfaces flowing by mean curvature , 1994 .
[23] E. Kuwert,et al. Gradient flow for the Willmore functional , 2002 .
[24] R. Bartnik. Existence of maximal surfaces in asymptotically flat spacetimes , 1984 .
[25] L. Simon. Existence of surfaces minimizing the Willmore functional , 1993 .
[26] G. Huisken,et al. Interior estimates for hypersurfaces moving by mean curvature , 1991 .
[27] R. Hamilton. Four-manifolds with positive curvature operator , 1986 .
[28] R. Hamilton. Three-manifolds with positive Ricci curvature , 1982 .
[29] R. Hamilton. Four-manifolds with positive isotropic curvature , 1997 .
[30] Theorems on the Regularity and Singularity of Minimal Surfaces and Harmonic Maps , 1996 .