Satellite-based columnar water vapor retrieval with the multi-spectral thermal imager (MTI)

The Multi-spectral Thermal Imager (MTI) has three near-infrared bands (E, F, and G) within the 850-1050-nm spectral range that are used for the columnar water vapor (CWV) retrieval using the continuum interpolated band ratio (CIBR) and the atmospheric precorrected differential absorption (APDA) methods. The retrieved CWV amounts are compared with the aerosol robotic network (AERONET) measurements at the Oklahoma Atmospheric Radiation Measurement (ARM) program and the Stennis Space Center sites. We find no significant difference in the accuracy of the two tested methods. However, there is a considerable difference in the root mean square error (RMSE) for the CWV retrieval over the Oklahoma ARM and the Stennis Space Center sites. The overall RMSE of the MTI CWV retrieval is found to be 13% to 14%. The error is reduced to 11% to 12% for CWV amounts larger then 1 g/cm/sup 2/.

[1]  J. Peixoto,et al.  Physics of climate , 1992 .

[2]  P. G. Weber,et al.  Design considerations, modeling, and analysis for the multispectral thermal imager , 1999, Defense, Security, and Sensing.

[3]  Daniel Schläpfer,et al.  Atmospheric Precorrected Differential Absorption Technique to Retrieve Columnar Water Vapor , 1998 .

[4]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[5]  Yoram J. Kaufman,et al.  Remote sensing of water vapor in the near IR from EOS/MODIS , 1992, IEEE Trans. Geosci. Remote. Sens..

[6]  Michèle Vesperini ECMWF analyses of humidity: comparisons to POLDER estimates over land , 2002 .

[7]  Ph. Dubuisson,et al.  Atmospheric water vapor estimate by a differential absorption technique with the POLDER instrument , 1995, Remote Sensing.

[8]  Petr Chylek,et al.  Satellite based retrieval of aerosol optical thickness: The effect of sun and satellite geometry , 2003 .

[9]  Robert Frouin,et al.  Determination from Space of Atmospheric Total Water Vapor Amounts by Differential Absorption near 940 nm: Theory and Airborne Verification , 1990 .

[10]  Annick Bricaud,et al.  The POLDER mission: instrument characteristics and scientific objectives , 1994, IEEE Trans. Geosci. Remote. Sens..

[11]  J. Barnard,et al.  Comparison of columnar water-vapor measurements from solar transmittance methods. , 2001, Applied optics.

[12]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[13]  Didier Tanré,et al.  Atmospheric water vapor estimate by a differential absorption technique with the polarisation and directionality of the Earth reflectances (POLDER) instrument , 1997 .

[14]  Ralf Bennartz,et al.  Retrieval of columnar water vapour over land from backscattered solar radiation using the Medium Resolution Imaging Spectrometer , 2001 .

[15]  Didier Tanré,et al.  Atmospheric water vapor content from spaceborne POLDER measurements , 1999, IEEE Trans. Geosci. Remote. Sens..

[16]  Philip B. Russell,et al.  Comparison of Columnar Water Vapor Measurements During The Fall 1997 ARM Intensive Observation Period: Solar Transmittance Methods , 2000 .

[17]  R. Green,et al.  Water vapor column abundance retrievals during FIFE , 1992 .

[18]  A. Goetz,et al.  Column atmospheric water vapor and vegetation liquid water retrievals from Airborne Imaging Spectrometer data , 1990 .

[19]  W. Paul Menzel,et al.  Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..

[20]  S Tahl Determination of the column water vapour of the atmosphere using backscattered solar radiation measured by the Modular Optoelectronic Scanner (MOS) , 1998 .

[21]  J. Conel,et al.  Recovery of atmospheric water vapor total column abundance from imaging spectrometer data around 940 nm - Sensitivity analysis and application to Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data , 1993 .