A new series of optimal tight conflict-avoiding codes of weight 3

Abstract In this article, a construction of an optimal tight conflict-avoiding code of length 3 d p e and weight 3 is shown for d ≡ 1 ( mod 3 ) , e ∈ N and a prime p ≡ 3 ( mod 8 ) with p ≠ 3 , assuming that p is a non-Wieferich prime if e ≥ 2 . This is a new series of optimal conflict-avoiding code for which the number of codewords can be exactly determined.

[1]  Hung-Lin Fu,et al.  Optimal Conflict-Avoiding Codes of Even Length and Weight 3 , 2010, IEEE Transactions on Information Theory.

[2]  László Györfi,et al.  Constructions of binary constant-weight cyclic codes and cyclically permutable codes , 1992, IEEE Trans. Inf. Theory.

[3]  Meinard Müller,et al.  Constant Weight Conflict-Avoiding Codes , 2007, SIAM J. Discret. Math..

[4]  Peter Mathys,et al.  A class of codes for a T active users out of N multiple-access communication system , 1990, IEEE Trans. Inf. Theory.

[5]  Vladimir I. Levenshtein,et al.  Conflict-avoiding codes and cyclic triple systems , 2007, Probl. Inf. Transm..

[6]  László Györfi,et al.  Constructions of protocol sequences for multiple access collision channel without feedback , 1993, IEEE Trans. Inf. Theory.

[7]  A. J. Han Vinck,et al.  Perfect (d, k)-codes capable of correcting single peak-shifts , 1993, IEEE Trans. Inf. Theory.

[8]  Yiling Lin,et al.  Optimal equi-difference conflict-avoiding codes of odd length and weight three , 2014, Finite Fields Their Appl..

[9]  Boris Tsybakov,et al.  Some Constructions of Conflict-Avoiding Codes , 2002, Probl. Inf. Transm..

[10]  Yiling Lin,et al.  Optimal equi-difference conflict-avoiding codes of weight four , 2016, Des. Codes Cryptogr..

[11]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[12]  Akihiro Munemasa On perfectt-shift codes in abelian groups , 1995, Des. Codes Cryptogr..

[13]  Vladimir D. Tonchev,et al.  Optimal conflict-avoiding codes for three active users , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[14]  Kenneth W. Shum,et al.  Optimal conflict-avoiding codes of odd length and weight three , 2014, Des. Codes Cryptogr..

[15]  Koji Momihara,et al.  Necessary and sufficient conditions for tight equi-difference conflict-avoiding codes of weight three , 2007, Des. Codes Cryptogr..

[16]  Hung-Lin Fu,et al.  Optimal conflict-avoiding codes of length n ≡ 0 (mod 16) and weight 3 , 2009, Des. Codes Cryptogr..

[17]  Wenping Ma,et al.  New optimal constructions of conflict-avoiding codes of odd length and weight 3 , 2014, Des. Codes Cryptogr..

[18]  James L. Massey,et al.  The collision channel without feedback , 1985, IEEE Trans. Inf. Theory.

[19]  Hung-Lin Fu,et al.  Optimal Tight Equi‐Difference Conflict‐Avoiding Codes of Length n = 2k ± 1 and Weight 3 , 2013 .

[20]  Vladimir D. Tonchev,et al.  On Conflict-Avoiding Codes of Length $n=4m$ for Three Active Users , 2007, IEEE Transactions on Information Theory.