Least-squares finite element methods

[1]  Clark R. Dohrmann,et al.  Stabilization of Low-order Mixed Finite Elements for the Stokes Equations , 2004, SIAM J. Numer. Anal..

[2]  C. Dohrmann,et al.  A stabilized finite element method for the Stokes problem based on polynomial pressure projections , 2004 .

[3]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[4]  P. Bochev,et al.  A Comparative Study of Least-squares, SUPG and Galerkin Methods for Convection Problems , 2001 .

[5]  P. Bochev,et al.  Improved Least-squares Error Estimates for Scalar Hyperbolic Problems , 2001 .

[6]  Ramon Codina,et al.  Stabilized finite element method for the transient Navier–Stokes equations based on a pressure gradient projection , 2000 .

[7]  Daniele Boffi,et al.  On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form , 2000, Math. Comput..

[8]  Peter Monk,et al.  A least-squares method for the Helmholtz equation , 1999 .

[9]  Pavel B. Bochev,et al.  Finite Element Methods of Least-Squares Type , 1998, SIAM Rev..

[10]  Max D. Gunzburger,et al.  Issues Related to Least-Squares Finite Element Methods for the Stokes Equations , 1998, SIAM J. Sci. Comput..

[11]  P. Bochev Analysis of Least-Squares Finite Element Methods for the Navier--Stokes Equations , 1997 .

[12]  Joseph E. Pasciak,et al.  A least-squares approach based on a discrete minus one inner product for first order systems , 1997, Math. Comput..

[13]  John J. Nelson,et al.  Least-Squares Finite Element Method for the Stokes Problem with Zero Residual of Mass Conservation , 1997 .

[14]  T. Manteuffel,et al.  FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .

[15]  M. Gunzburger,et al.  Analysis of least squares finite element methods for the Stokes equations , 1994 .

[16]  Ching L. Chang,et al.  Finite element approximation for grad-div type systems in the plane , 1992 .

[17]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[18]  Max Gunzburger,et al.  A subdomain Galerkin/Least squares method for first-order elliptic systems in the plane , 1990 .

[19]  G. Pinder,et al.  Least squares collocation solution of differential equations on irregularly shaped domains using orthogonal meshes , 1989 .

[20]  Jim Douglas,et al.  An absolutely stabilized finite element method for the stokes problem , 1989 .

[21]  Thomas J. R. Hughes,et al.  The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .

[22]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[23]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[24]  R. B. Kellogg,et al.  Least Squares Methods for Elliptic Systems , 1985 .

[25]  Dennis C. Jespersen,et al.  A least squares decomposition method for solving elliptic equations , 1977 .

[26]  E. Eason A review of least-squares methods for solving partial differential equations , 1976 .

[27]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[28]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[29]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .