An Introduction to Deep Reinforcement Learning

Deep reinforcement learning is the combination of reinforcement learning (RL) and deep learning. This field of research has been able to solve a wide range of complex decision-making tasks that were previously out of reach for a machine. Thus, deep RL opens up many new applications in domains such as healthcare, robotics, smart grids, finance, and many more. This manuscript provides an introduction to deep reinforcement learning models, algorithms and techniques. Particular focus is on the aspects related to generalization and how deep RL can be used for practical applications. We assume the reader is familiar with basic machine learning concepts.

[1]  D. Whitteridge Lectures on Conditioned Reflexes , 1942, Nature.

[2]  Claude E. Shannon,et al.  Programming a computer for playing chess , 1950 .

[3]  R. Bellman A Markovian Decision Process , 1957 .

[4]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1959, IBM J. Res. Dev..

[5]  Stuart E. Dreyfus,et al.  Applied Dynamic Programming , 1965 .

[6]  Walter Dandy,et al.  The Brain , 1966 .

[7]  R. Rescorla A theory of pavlovian conditioning: The effectiveness of reinforcement and non-reinforcement , 1972 .

[8]  D. Vere-Jones Markov Chains , 1972, Nature.

[9]  S. C. Jaquette Markov Decision Processes with a New Optimality Criterion: Discrete Time , 1973 .

[10]  Edward J. Sondik,et al.  The Optimal Control of Partially Observable Markov Processes over the Infinite Horizon: Discounted Costs , 1978, Oper. Res..

[11]  Kunihiko Fukushima,et al.  Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Visual Pattern Recognition , 1982 .

[12]  Richard S. Sutton,et al.  Neuronlike adaptive elements that can solve difficult learning control problems , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[13]  Richard S. Sutton,et al.  Temporal credit assignment in reinforcement learning , 1984 .

[14]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[15]  Learning from delayed rewards , 1989 .

[16]  Andrew W. Moore,et al.  Efficient memory-based learning for robot control , 1990 .

[17]  B. Widrow,et al.  Neural networks for self-learning control systems , 1991, IEEE Control Systems Magazine.

[18]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[19]  Sebastian Thrun,et al.  Efficient Exploration In Reinforcement Learning , 1992 .

[20]  Bernd Brügmann Max-Planck Monte Carlo Go , 1993 .

[21]  Terrence J. Sejnowski,et al.  Temporal Difference Learning of Position Evaluation in the Game of Go , 1993, NIPS.

[22]  Andrew W. Moore,et al.  Generalization in Reinforcement Learning: Safely Approximating the Value Function , 1994, NIPS.

[23]  Michael L. Littman,et al.  Markov Games as a Framework for Multi-Agent Reinforcement Learning , 1994, ICML.

[24]  Michael I. Jordan,et al.  Learning Without State-Estimation in Partially Observable Markovian Decision Processes , 1994, ICML.

[25]  Deborah Silver,et al.  Feature Visualization , 1994, Scientific Visualization.

[26]  Gerald Tesauro,et al.  Temporal difference learning and TD-Gammon , 1995, CACM.

[27]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control , 1995 .

[28]  Richard S. Sutton,et al.  Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding , 1995, NIPS.

[29]  Geoffrey J. Gordon Stable Fitted Reinforcement Learning , 1995, NIPS.

[30]  Inman Harvey,et al.  Noise and the Reality Gap: The Use of Simulation in Evolutionary Robotics , 1995, ECAL.

[31]  Leemon C. Baird Residual Algorithms: Reinforcement Learning with Function Approximation , 1995, ICML.

[32]  Andrew McCallum,et al.  Reinforcement learning with selective perception and hidden state , 1996 .

[33]  John N. Tsitsiklis,et al.  Analysis of Temporal-Diffference Learning with Function Approximation , 1996, NIPS.

[34]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[35]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[36]  Richard S. Sutton,et al.  Roles of Macro-Actions in Accelerating Reinforcement Learning , 1998 .

[37]  Milos Hauskrecht,et al.  Hierarchical Solution of Markov Decision Processes using Macro-actions , 1998, UAI.

[38]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[39]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[40]  Thomas G. Dietterich Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.

[41]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[42]  Yoshua Bengio,et al.  Convolutional networks for images, speech, and time series , 1998 .

[43]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[44]  Stuart J. Russell,et al.  Bayesian Q-Learning , 1998, AAAI/IAAI.

[45]  Doina Precup,et al.  Between MDPs and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning , 1999, Artif. Intell..

[46]  David Andre,et al.  Model based Bayesian Exploration , 1999, UAI.

[47]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[48]  Geoffrey J. Gordon,et al.  Approximate solutions to markov decision processes , 1999 .

[49]  John N. Tsitsiklis,et al.  Actor-Critic Algorithms , 1999, NIPS.

[50]  Andrew Y. Ng,et al.  Policy Invariance Under Reward Transformations: Theory and Application to Reward Shaping , 1999, ICML.

[51]  Yishay Mansour,et al.  Policy Gradient Methods for Reinforcement Learning with Function Approximation , 1999, NIPS.

[52]  Doina Precup,et al.  Eligibility Traces for Off-Policy Policy Evaluation , 2000, ICML.

[53]  Andrew Y. Ng,et al.  Algorithms for Inverse Reinforcement Learning , 2000, ICML.

[54]  Manuela M. Veloso,et al.  Layered Learning , 2000, ECML.

[55]  Peter L. Bartlett,et al.  Rademacher and Gaussian Complexities: Risk Bounds and Structural Results , 2003, J. Mach. Learn. Res..

[56]  Sepp Hochreiter,et al.  Learning to Learn Using Gradient Descent , 2001, ICANN.

[57]  Sham M. Kakade,et al.  A Natural Policy Gradient , 2001, NIPS.

[58]  Murray Campbell,et al.  Deep Blue , 2002, Artif. Intell..

[59]  Clay B Holroyd,et al.  The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. , 2002, Psychological review.

[60]  Ronen I. Brafman,et al.  R-MAX - A General Polynomial Time Algorithm for Near-Optimal Reinforcement Learning , 2001, J. Mach. Learn. Res..

[61]  D. Braziunas POMDP solution methods , 2003 .

[62]  Joelle Pineau,et al.  Point-based value iteration: An anytime algorithm for POMDPs , 2003, IJCAI.

[63]  John Langford,et al.  Exploration in Metric State Spaces , 2003, ICML.

[64]  Remco R. Bouckaert,et al.  Choosing Between Two Learning Algorithms Based on Calibrated Tests , 2003, ICML.

[65]  Peter Dayan,et al.  Q-learning , 1992, Machine Learning.

[66]  Gareth James,et al.  Variance and Bias for General Loss Functions , 2003, Machine Learning.

[67]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[68]  Richard S. Sutton,et al.  Reinforcement learning with replacing eligibility traces , 2004, Machine Learning.

[69]  Tommi S. Jaakkola,et al.  Convergence Results for Single-Step On-Policy Reinforcement-Learning Algorithms , 2000, Machine Learning.

[70]  Eibe Frank,et al.  Evaluating the Replicability of Significance Tests for Comparing Learning Algorithms , 2004, PAKDD.

[71]  Andrew W. Moore,et al.  Variable Resolution Discretization in Optimal Control , 2002, Machine Learning.

[72]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[73]  Colin Camerer,et al.  Neuroeconomics: How Neuroscience Can Inform Economics , 2005 .

[74]  R. J. Williams Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning , 1992, Machine Learning.

[75]  A. Barto,et al.  An algebraic approach to abstraction in reinforcement learning , 2004 .

[76]  Michael Kearns,et al.  Near-Optimal Reinforcement Learning in Polynomial Time , 1998, Machine Learning.

[77]  Longxin Lin Self-Improving Reactive Agents Based on Reinforcement Learning, Planning and Teaching , 2004, Machine Learning.

[78]  Jing Peng,et al.  Incremental multi-step Q-learning , 2004, Machine Learning.

[79]  Pieter Abbeel,et al.  Apprenticeship learning via inverse reinforcement learning , 2004, ICML.

[80]  Martin A. Riedmiller Neural Fitted Q Iteration - First Experiences with a Data Efficient Neural Reinforcement Learning Method , 2005, ECML.

[81]  Pierre Geurts,et al.  Tree-Based Batch Mode Reinforcement Learning , 2005, J. Mach. Learn. Res..

[82]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 2005, IEEE Transactions on Neural Networks.

[83]  Richard S. Sutton,et al.  Learning to Predict by the Methods of Temporal Differences , 1988, Machine Learning.

[84]  Kurt Driessens,et al.  Relational reinforcement learning , 2005, AI Commun..

[85]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[86]  Olivier Teytaud,et al.  Modification of UCT with Patterns in Monte-Carlo Go , 2006 .

[87]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[88]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[89]  Angela J. Yu,et al.  Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[90]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, J. Electronic Imaging.

[91]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[92]  Csaba Szepesvári,et al.  Apprenticeship Learning using Inverse Reinforcement Learning and Gradient Methods , 2007, UAI.

[93]  Michael L. Littman,et al.  Efficient Reinforcement Learning with Relocatable Action Models , 2007, AAAI.

[94]  Louis Wehenkel,et al.  Variable selection for dynamic treatment regimes: a reinforcement learning approach , 2008 .

[95]  P. Dayan,et al.  Decision theory, reinforcement learning, and the brain , 2008, Cognitive, affective & behavioral neuroscience.

[96]  P. Dayan,et al.  Reinforcement learning: The Good, The Bad and The Ugly , 2008, Current Opinion in Neurobiology.

[97]  Marek Petrik,et al.  Biasing Approximate Dynamic Programming with a Lower Discount Factor , 2008, NIPS.

[98]  Thomas G. Dietterich Machine Learning and Ecosystem Informatics: Challenges and Opportunities , 2009, ACML.

[99]  Andrew Y. Ng,et al.  Near-Bayesian exploration in polynomial time , 2009, ICML '09.

[100]  Shimon Whiteson,et al.  Automatic Feature Selection for Model-Based Reinforcement Learning in Factored MDPs , 2009, 2009 International Conference on Machine Learning and Applications.

[101]  Y. Niv Reinforcement learning in the brain , 2009 .

[102]  Pascal Vincent,et al.  Visualizing Higher-Layer Features of a Deep Network , 2009 .

[103]  Carl E. Rasmussen,et al.  Gaussian Processes for Machine Learning , 2003, Adaptive computation and machine learning.

[104]  Brian Tanner,et al.  RL-Glue: Language-Independent Software for Reinforcement-Learning Experiments , 2009, J. Mach. Learn. Res..

[105]  Jason Weston,et al.  Curriculum learning , 2009, ICML '09.

[106]  Wouter Josemans Generalization in Reinforcement Learning , 2009 .

[107]  Theoretical and Empirical Studies of Learning , 2009 .

[108]  Monica Dinculescu,et al.  Approximate Predictive Representations of Partially Observable Systems , 2010, ICML.

[109]  Masashi Sugiyama,et al.  Nonparametric Return Distribution Approximation for Reinforcement Learning , 2010, ICML.

[110]  J. Andrew Bagnell,et al.  Modeling purposeful adaptive behavior with the principle of maximum causal entropy , 2010 .

[111]  Jürgen Schmidhuber,et al.  Formal Theory of Creativity, Fun, and Intrinsic Motivation (1990–2010) , 2010, IEEE Transactions on Autonomous Mental Development.

[112]  Hado van Hasselt Double Q-learning , 2010, NIPS.

[113]  A. Casadevall,et al.  Reproducible Science , 2010, Infection and Immunity.

[114]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[115]  Shimon Whiteson,et al.  Protecting against evaluation overfitting in empirical reinforcement learning , 2011, 2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL).

[116]  Rémi Munos,et al.  Pure exploration in finitely-armed and continuous-armed bandits , 2011, Theor. Comput. Sci..

[117]  Yi Sun,et al.  Planning to Be Surprised: Optimal Bayesian Exploration in Dynamic Environments , 2011, AGI.

[118]  Martin A. Riedmiller,et al.  Reinforcement learning in feedback control , 2011, Machine Learning.

[119]  Carl E. Rasmussen,et al.  PILCO: A Model-Based and Data-Efficient Approach to Policy Search , 2011, ICML.

[120]  D. Kahneman Thinking, Fast and Slow , 2011 .

[121]  Jan Peters,et al.  Relative Entropy Inverse Reinforcement Learning , 2011, AISTATS.

[122]  Wei Chu,et al.  Unbiased offline evaluation of contextual-bandit-based news article recommendation algorithms , 2010, WSDM '11.

[123]  Ian D. Watson,et al.  Applying reinforcement learning to small scale combat in the real-time strategy game StarCraft:Broodwar , 2012, 2012 IEEE Conference on Computational Intelligence and Games (CIG).

[124]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[125]  Regina Barzilay,et al.  Learning High-Level Planning from Text , 2012, ACL.

[126]  H. Seo,et al.  Neural basis of reinforcement learning and decision making. , 2012, Annual review of neuroscience.

[127]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[128]  Yuval Tassa,et al.  MuJoCo: A physics engine for model-based control , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[129]  Simon M. Lucas,et al.  A Survey of Monte Carlo Tree Search Methods , 2012, IEEE Transactions on Computational Intelligence and AI in Games.

[130]  Bruno Castro da Silva,et al.  Learning Parameterized Skills , 2012, ICML.

[131]  Anton Nekrutenko,et al.  Ten Simple Rules for Reproducible Computational Research , 2013, PLoS Comput. Biol..

[132]  Louis Wehenkel,et al.  Batch mode reinforcement learning based on the synthesis of artificial trajectories , 2013, Ann. Oper. Res..

[133]  Sergey Levine,et al.  Guided Policy Search , 2013, ICML.

[134]  Stefan Schaal,et al.  Learning objective functions for manipulation , 2013, 2013 IEEE International Conference on Robotics and Automation.

[135]  P. Montague Reinforcement Learning Models Then-and-Now: From Single Cells to Modern Neuroimaging , 2013 .

[136]  Pieter Abbeel,et al.  Learning from Demonstrations Through the Use of Non-rigid Registration , 2013, ISRR.

[137]  Qiang Yang,et al.  Lifelong Machine Learning Systems: Beyond Learning Algorithms , 2013, AAAI Spring Symposium: Lifelong Machine Learning.

[138]  S. Barry Cooper Digital Computers Applied to Games , 2013 .

[139]  Kris K. Hauser,et al.  Artificial intelligence framework for simulating clinical decision-making: A Markov decision process approach , 2013, Artif. Intell. Medicine.

[140]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[141]  Philip Thomas,et al.  Bias in Natural Actor-Critic Algorithms , 2014, ICML.

[142]  Sergey Levine,et al.  Offline policy evaluation across representations with applications to educational games , 2014, AAMAS.

[143]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[144]  Christoph Salge,et al.  Changing the Environment Based on Empowerment as Intrinsic Motivation , 2014, Entropy.

[145]  Guy Lever,et al.  Deterministic Policy Gradient Algorithms , 2014, ICML.

[146]  Ronald Ortner,et al.  Selecting Near-Optimal Approximate State Representations in Reinforcement Learning , 2014, ALT.

[147]  Matthew E. Taylor,et al.  Multi-objectivization of reinforcement learning problems by reward shaping , 2014, 2014 International Joint Conference on Neural Networks (IJCNN).

[148]  Alex Graves,et al.  Neural Turing Machines , 2014, ArXiv.

[149]  R. Dolan,et al.  Does temporal discounting explain unhealthy behavior? A systematic review and reinforcement learning perspective , 2014, Front. Behav. Neurosci..

[150]  Nan Jiang,et al.  Abstraction Selection in Model-based Reinforcement Learning , 2015, ICML.

[151]  Shie Mannor,et al.  Bayesian Reinforcement Learning: A Survey , 2015, Found. Trends Mach. Learn..

[152]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[153]  Yoshua Bengio,et al.  Towards Biologically Plausible Deep Learning , 2015, ArXiv.

[154]  Sergey Levine,et al.  Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models , 2015, ArXiv.

[155]  Thomas B. Schön,et al.  From Pixels to Torques: Policy Learning with Deep Dynamical Models , 2015, ICML 2015.

[156]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[157]  Yoshua Bengio,et al.  Show, Attend and Tell: Neural Image Caption Generation with Visual Attention , 2015, ICML.

[158]  D. Curran‐Everett,et al.  The fickle P value generates irreproducible results , 2015, Nature Methods.

[159]  Tom Schaul,et al.  Universal Value Function Approximators , 2015, ICML.

[160]  Yuval Tassa,et al.  Learning Continuous Control Policies by Stochastic Value Gradients , 2015, NIPS.

[161]  Sergey Levine,et al.  Trust Region Policy Optimization , 2015, ICML.

[162]  Nan Jiang,et al.  The Dependence of Effective Planning Horizon on Model Accuracy , 2015, AAMAS.

[163]  Dirk Lindebaum Sapiens: A Brief History of Humankind - A Review , 2015 .

[164]  Yoshua Bengio,et al.  Deep Learning , 2015, Nature.

[165]  Shakir Mohamed,et al.  Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning , 2015, NIPS.

[166]  Damien Ernst,et al.  How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies , 2015, ArXiv.

[167]  Martin A. Riedmiller,et al.  Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images , 2015, NIPS.

[168]  Jianfeng Gao,et al.  Recurrent Reinforcement Learning: A Hybrid Approach , 2015, ArXiv.

[169]  Zoran Popovic,et al.  Interactive Control of Diverse Complex Characters with Neural Networks , 2015, NIPS.

[170]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[171]  Honglak Lee,et al.  Action-Conditional Video Prediction using Deep Networks in Atari Games , 2015, NIPS.

[172]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[173]  Peter Stone,et al.  Deep Recurrent Q-Learning for Partially Observable MDPs , 2015, AAAI Fall Symposia.

[174]  Marc G. Bellemare,et al.  The Arcade Learning Environment: An Evaluation Platform for General Agents (Extended Abstract) , 2012, IJCAI.

[175]  Alborz Geramifard,et al.  RLPy: a value-function-based reinforcement learning framework for education and research , 2015, J. Mach. Learn. Res..

[176]  V. Upadhyay Capital in the Twenty-First Century , 2015 .

[177]  Yuval Tassa,et al.  Continuous control with deep reinforcement learning , 2015, ICLR.

[178]  Sergey Levine,et al.  Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization , 2016, ICML.

[179]  Xin Zhang,et al.  End to End Learning for Self-Driving Cars , 2016, ArXiv.

[180]  Pieter Abbeel,et al.  Benchmarking Deep Reinforcement Learning for Continuous Control , 2016, ICML.

[181]  Tianqi Chen,et al.  Net2Net: Accelerating Learning via Knowledge Transfer , 2015, ICLR.

[182]  Yann LeCun,et al.  Deep multi-scale video prediction beyond mean square error , 2015, ICLR.

[183]  Razvan Pascanu,et al.  Policy Distillation , 2015, ICLR.

[184]  Ruslan Salakhutdinov,et al.  Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning , 2016, ICLR.

[185]  Anca D. Dragan,et al.  Cooperative Inverse Reinforcement Learning , 2016, NIPS.

[186]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[187]  Nan Jiang,et al.  Doubly Robust Off-policy Value Evaluation for Reinforcement Learning , 2015, ICML.

[188]  Filip De Turck,et al.  VIME: Variational Information Maximizing Exploration , 2016, NIPS.

[189]  Marc'Aurelio Ranzato,et al.  Sequence Level Training with Recurrent Neural Networks , 2015, ICLR.

[190]  Murray Shanahan,et al.  Towards Deep Symbolic Reinforcement Learning , 2016, ArXiv.

[191]  David Silver,et al.  Deep Reinforcement Learning with Double Q-Learning , 2015, AAAI.

[192]  Zachary Chase Lipton,et al.  Efficient Exploration for Dialogue Policy Learning with BBQ Networks & Replay Buffer Spiking , 2016 .

[193]  Roy Fox,et al.  Taming the Noise in Reinforcement Learning via Soft Updates , 2015, UAI.

[194]  Stefano Ermon,et al.  Generative Adversarial Imitation Learning , 2016, NIPS.

[195]  Benjamin Van Roy,et al.  Deep Exploration via Bootstrapped DQN , 2016, NIPS.

[196]  Alex Graves,et al.  Strategic Attentive Writer for Learning Macro-Actions , 2016, NIPS.

[197]  Tom Schaul,et al.  Dueling Network Architectures for Deep Reinforcement Learning , 2015, ICML.

[198]  Rob Fergus,et al.  Learning Multiagent Communication with Backpropagation , 2016, NIPS.

[199]  Honglak Lee,et al.  Control of Memory, Active Perception, and Action in Minecraft , 2016, ICML.

[200]  Sergey Levine,et al.  Adapting Deep Visuomotor Representations with Weak Pairwise Constraints , 2015, WAFR.

[201]  M. Baker 1,500 scientists lift the lid on reproducibility , 2016, Nature.

[202]  Damien Ernst,et al.  Deep Reinforcement Learning Solutions for Energy Microgrids Management , 2016 .

[203]  Jürgen Schmidhuber,et al.  A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots , 2016, IEEE Robotics and Automation Letters.

[204]  Alex Graves,et al.  Asynchronous Methods for Deep Reinforcement Learning , 2016, ICML.

[205]  Tom Schaul,et al.  Unifying Count-Based Exploration and Intrinsic Motivation , 2016, NIPS.

[206]  Pieter Abbeel,et al.  Value Iteration Networks , 2016, NIPS.

[207]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[208]  Peter Stone,et al.  Source Task Creation for Curriculum Learning , 2016, AAMAS.

[209]  Marc G. Bellemare,et al.  Q($\lambda$) with Off-Policy Corrections , 2016 .

[210]  Peter L. Bartlett,et al.  RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning , 2016, ArXiv.

[211]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[212]  Wojciech Jaskowski,et al.  ViZDoom: A Doom-based AI research platform for visual reinforcement learning , 2016, 2016 IEEE Conference on Computational Intelligence and Games (CIG).

[213]  Shane Legg,et al.  DeepMind Lab , 2016, ArXiv.

[214]  Nando de Freitas,et al.  Neural Programmer-Interpreters , 2015, ICLR.

[215]  Sergey Levine,et al.  End-to-End Training of Deep Visuomotor Policies , 2015, J. Mach. Learn. Res..

[216]  Katja Hofmann,et al.  The Malmo Platform for Artificial Intelligence Experimentation , 2016, IJCAI.

[217]  Quoc V. Le,et al.  Neural Programmer: Inducing Latent Programs with Gradient Descent , 2015, ICLR.

[218]  Koray Kavukcuoglu,et al.  PGQ: Combining policy gradient and Q-learning , 2016, ArXiv.

[219]  Tom Schaul,et al.  Prioritized Experience Replay , 2015, ICLR.

[220]  Li Li,et al.  Traffic signal timing via deep reinforcement learning , 2016, IEEE/CAA Journal of Automatica Sinica.

[221]  Sergey Levine,et al.  Continuous Deep Q-Learning with Model-based Acceleration , 2016, ICML.

[222]  Joshua B. Tenenbaum,et al.  Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation , 2016, NIPS.

[223]  Florian Richoux,et al.  TorchCraft: a Library for Machine Learning Research on Real-Time Strategy Games , 2016, ArXiv.

[224]  Alejandro Hernández Cordero,et al.  Extending the OpenAI Gym for robotics: a toolkit for reinforcement learning using ROS and Gazebo , 2016, ArXiv.

[225]  Marc G. Bellemare,et al.  Safe and Efficient Off-Policy Reinforcement Learning , 2016, NIPS.

[226]  Julian Togelius,et al.  The 2014 General Video Game Playing Competition , 2016, IEEE Transactions on Computational Intelligence and AI in Games.

[227]  John Schulman,et al.  Concrete Problems in AI Safety , 2016, ArXiv.

[228]  Philip S. Thomas,et al.  Data-Efficient Off-Policy Policy Evaluation for Reinforcement Learning , 2016, ICML.

[229]  Shie Mannor,et al.  Adaptive Skills Adaptive Partitions (ASAP) , 2016, NIPS.

[230]  Sergey Levine,et al.  Unsupervised Learning for Physical Interaction through Video Prediction , 2016, NIPS.

[231]  Zoubin Ghahramani,et al.  Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning , 2015, ICML.

[232]  Wojciech Zaremba,et al.  OpenAI Gym , 2016, ArXiv.

[233]  Razvan Pascanu,et al.  A simple neural network module for relational reasoning , 2017, NIPS.

[234]  Marc G. Bellemare,et al.  The Reactor: A Sample-Efficient Actor-Critic Architecture , 2017, ArXiv.

[235]  Joelle Pineau,et al.  An Actor-Critic Algorithm for Sequence Prediction , 2017, ICLR.

[236]  Tuomas Sandholm,et al.  Libratus: The Superhuman AI for No-Limit Poker , 2017, IJCAI.

[237]  Damien Ernst,et al.  Approximate Bayes Optimal Policy Search using Neural Networks , 2017, ICAART.

[238]  Doina Precup,et al.  The Option-Critic Architecture , 2016, AAAI.

[239]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[240]  Alexei A. Efros,et al.  Curiosity-Driven Exploration by Self-Supervised Prediction , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[241]  Zeb Kurth-Nelson,et al.  Learning to reinforcement learn , 2016, CogSci.

[242]  Louis Wehenkel,et al.  Machine learning of real-time power systems reliability management response , 2017, 2017 IEEE Manchester PowerTech.

[243]  Li Fei-Fei,et al.  Inferring and Executing Programs for Visual Reasoning , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[244]  Tom Schaul,et al.  The Predictron: End-To-End Learning and Planning , 2017, ICML.

[245]  Shimon Whiteson,et al.  Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning , 2017, ICML.

[246]  Shie Mannor,et al.  A Deep Hierarchical Approach to Lifelong Learning in Minecraft , 2016, AAAI.

[247]  Pieter Abbeel,et al.  Stochastic Neural Networks for Hierarchical Reinforcement Learning , 2016, ICLR.

[248]  Learning Robust Dialog Policies in Noisy Environments , 2017, ArXiv.

[249]  Chris Sauer,et al.  Beating Atari with Natural Language Guided Reinforcement Learning , 2017, ArXiv.

[250]  Sepp Hochreiter,et al.  Self-Normalizing Neural Networks , 2017, NIPS.

[251]  Vladlen Koltun,et al.  Learning to Act by Predicting the Future , 2016, ICLR.

[252]  Xi Chen,et al.  Evolution Strategies as a Scalable Alternative to Reinforcement Learning , 2017, ArXiv.

[253]  D. Hassabis,et al.  Neuroscience-Inspired Artificial Intelligence , 2017, Neuron.

[254]  Razvan Pascanu,et al.  Sim-to-Real Robot Learning from Pixels with Progressive Nets , 2016, CoRL.

[255]  Razvan Pascanu,et al.  Overcoming catastrophic forgetting in neural networks , 2016, Proceedings of the National Academy of Sciences.

[256]  Yoshua Bengio The Consciousness Prior , 2017, ArXiv.

[257]  Sergey Levine,et al.  Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic , 2017, ICLR.

[258]  Abhinav Gupta,et al.  Learning to fly by crashing , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[259]  Samy Bengio,et al.  Understanding deep learning requires rethinking generalization , 2016, ICLR.

[260]  Yuandong Tian,et al.  ELF: An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games , 2017, NIPS.

[261]  Shane Legg,et al.  Deep Reinforcement Learning from Human Preferences , 2017, NIPS.

[262]  Marcin Andrychowicz,et al.  One-Shot Imitation Learning , 2017, NIPS.

[263]  Wojciech Zaremba,et al.  Domain randomization for transferring deep neural networks from simulation to the real world , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[264]  Razvan Pascanu,et al.  Imagination-Augmented Agents for Deep Reinforcement Learning , 2017, NIPS.

[265]  Tom Schaul,et al.  StarCraft II: A New Challenge for Reinforcement Learning , 2017, ArXiv.

[266]  Guan Wang,et al.  Interactive Learning from Policy-Dependent Human Feedback , 2017, ICML.

[267]  Quoc V. Le,et al.  Neural Architecture Search with Reinforcement Learning , 2016, ICLR.

[268]  Vincent François-Lavet,et al.  Contributions to deep reinforcement learning and its applications in smartgrids , 2017 .

[269]  Nando de Freitas,et al.  Sample Efficient Actor-Critic with Experience Replay , 2016, ICLR.

[270]  Sebastian Ruder,et al.  An Overview of Multi-Task Learning in Deep Neural Networks , 2017, ArXiv.

[271]  Dawn Xiaodong Song,et al.  Learning Neural Programs To Parse Programs , 2017, ArXiv.

[272]  Richard E. Turner,et al.  Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning , 2017, NIPS.

[273]  Cewu Lu,et al.  Virtual to Real Reinforcement Learning for Autonomous Driving , 2017, BMVC.

[274]  Ali Farhadi,et al.  Target-driven visual navigation in indoor scenes using deep reinforcement learning , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[275]  Yi Wu,et al.  Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments , 2017, NIPS.

[276]  Marlos C. Machado,et al.  A Laplacian Framework for Option Discovery in Reinforcement Learning , 2017, ICML.

[277]  Emma Brunskill,et al.  Sample Efficient Feature Selection for Factored MDPs , 2017, ArXiv.

[278]  Sergey Levine,et al.  Reinforcement Learning with Deep Energy-Based Policies , 2017, ICML.

[279]  Dileep George,et al.  Schema Networks: Zero-shot Transfer with a Generative Causal Model of Intuitive Physics , 2017, ICML.

[280]  Samuel J. Gershman,et al.  Predictive representations can link model-based reinforcement learning to model-free mechanisms , 2017 .

[281]  Jun Wang,et al.  Multiagent Bidirectionally-Coordinated Nets for Learning to Play StarCraft Combat Games , 2017, ArXiv.

[282]  Glen Berseth,et al.  DeepLoco: dynamic locomotion skills using hierarchical deep reinforcement learning , 2017, ACM Trans. Graph..

[283]  Christopher Burgess,et al.  DARLA: Improving Zero-Shot Transfer in Reinforcement Learning , 2017, ICML.

[284]  Kevin Waugh,et al.  DeepStack: Expert-level artificial intelligence in heads-up no-limit poker , 2017, Science.

[285]  Tsuneo Kato,et al.  “Re:ROS”: Prototyping of Reinforcement Learning Environment for Asynchronous Cognitive Architecture , 2017, BICA 2017.

[286]  Yuandong Tian,et al.  Training Agent for First-Person Shooter Game with Actor-Critic Curriculum Learning , 2016, ICLR.

[287]  Daan Wierstra,et al.  Variational Intrinsic Control , 2016, ICLR.

[288]  Alex Graves,et al.  Video Pixel Networks , 2016, ICML.

[289]  Sergey Ioffe,et al.  Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , 2016, AAAI.

[290]  Daan Wierstra,et al.  Recurrent Environment Simulators , 2017, ICLR.

[291]  Razvan Pascanu,et al.  Learning model-based planning from scratch , 2017, ArXiv.

[292]  A. P. Hyper-parameters Count-Based Exploration with Neural Density Models , 2017 .

[293]  Marc G. Bellemare,et al.  A Distributional Perspective on Reinforcement Learning , 2017, ICML.

[294]  Sergey Levine,et al.  Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks , 2017, ICML.

[295]  Satinder Singh,et al.  Value Prediction Network , 2017, NIPS.

[296]  Yee Whye Teh,et al.  Distral: Robust multitask reinforcement learning , 2017, NIPS.

[297]  Pieter Abbeel,et al.  Equivalence Between Policy Gradients and Soft Q-Learning , 2017, ArXiv.

[298]  Razvan Pascanu,et al.  Learning to Navigate in Complex Environments , 2016, ICLR.

[299]  Gregory Dudek,et al.  Benchmark Environments for Multitask Learning in Continuous Domains , 2017, ArXiv.

[300]  Samy Bengio,et al.  Neural Combinatorial Optimization with Reinforcement Learning , 2016, ICLR.

[301]  Tom Schaul,et al.  Reinforcement Learning with Unsupervised Auxiliary Tasks , 2017, ICLR.

[302]  Shimon Whiteson,et al.  TreeQN and ATreeC: Differentiable Tree Planning for Deep Reinforcement Learning , 2017, ICLR 2018.

[303]  Peter Henderson,et al.  Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for Continuous Control , 2017, ArXiv.

[304]  Alec Radford,et al.  Proximal Policy Optimization Algorithms , 2017, ArXiv.

[305]  Guillaume Lample,et al.  Playing FPS Games with Deep Reinforcement Learning , 2016, AAAI.

[306]  Sergey Levine,et al.  Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[307]  Quoc V. Le,et al.  Large-Scale Evolution of Image Classifiers , 2017, ICML.

[308]  Sergey Levine,et al.  (CAD)$^2$RL: Real Single-Image Flight without a Single Real Image , 2016, Robotics: Science and Systems.

[309]  Youyong Kong,et al.  Deep Direct Reinforcement Learning for Financial Signal Representation and Trading , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[310]  Dopamine , 2018, Reactions Weekly.

[311]  Tom Schaul,et al.  Rainbow: Combining Improvements in Deep Reinforcement Learning , 2017, AAAI.

[312]  Marcin Andrychowicz,et al.  Parameter Space Noise for Exploration , 2017, ICLR.

[313]  Shimon Whiteson,et al.  Learning with Opponent-Learning Awareness , 2017, AAMAS.

[314]  Daniel L. K. Yamins,et al.  Learning to Play with Intrinsically-Motivated Self-Aware Agents , 2018, NeurIPS.

[315]  Marwan Mattar,et al.  Unity: A General Platform for Intelligent Agents , 2018, ArXiv.

[316]  Shimon Whiteson,et al.  Counterfactual Multi-Agent Policy Gradients , 2017, AAAI.

[317]  Nando de Freitas,et al.  Intrinsic Social Motivation via Causal Influence in Multi-Agent RL , 2018, ArXiv.

[318]  Philip Bachman,et al.  Deep Reinforcement Learning that Matters , 2017, AAAI.

[319]  Marlos C. Machado,et al.  Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents , 2017, IJCAI.

[320]  Samy Bengio,et al.  A Study on Overfitting in Deep Reinforcement Learning , 2018, ArXiv.

[321]  Pieter Abbeel,et al.  Automatic Goal Generation for Reinforcement Learning Agents , 2017, ICML.

[322]  Shane Legg,et al.  Noisy Networks for Exploration , 2017, ICLR.

[323]  Atil Iscen,et al.  Sim-to-Real: Learning Agile Locomotion For Quadruped Robots , 2018, Robotics: Science and Systems.

[324]  Nando de Freitas,et al.  Playing hard exploration games by watching YouTube , 2018, NeurIPS.

[325]  Sergio Gomez Colmenarejo,et al.  One-Shot High-Fidelity Imitation: Training Large-Scale Deep Nets with RL , 2018, ArXiv.

[326]  Sergey Levine,et al.  Imitation from Observation: Learning to Imitate Behaviors from Raw Video via Context Translation , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[327]  Xiaohui Ye,et al.  Horizon: Facebook's Open Source Applied Reinforcement Learning Platform , 2018, ArXiv.

[328]  Joel Z. Leibo,et al.  Human-level performance in first-person multiplayer games with population-based deep reinforcement learning , 2018, ArXiv.

[329]  Hyrum S. Anderson,et al.  The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation , 2018, ArXiv.

[330]  Joelle Pineau,et al.  A Dissection of Overfitting and Generalization in Continuous Reinforcement Learning , 2018, ArXiv.

[331]  Yee Whye Teh,et al.  An Analysis of Categorical Distributional Reinforcement Learning , 2018, AISTATS.

[332]  Peter Stone,et al.  Deep TAMER: Interactive Agent Shaping in High-Dimensional State Spaces , 2017, AAAI.

[333]  Guy Lever,et al.  Value-Decomposition Networks For Cooperative Multi-Agent Learning , 2018, AAMAS.

[334]  Martin A. Riedmiller,et al.  Learning by Playing - Solving Sparse Reward Tasks from Scratch , 2018, ICML.

[335]  Sergey Levine,et al.  Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[336]  Marcin Andrychowicz,et al.  Asymmetric Actor Critic for Image-Based Robot Learning , 2017, Robotics: Science and Systems.

[337]  Sergey Levine,et al.  QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation , 2018, CoRL.

[338]  Marc G. Bellemare,et al.  The Reactor: A fast and sample-efficient Actor-Critic agent for Reinforcement Learning , 2018, ICLR.

[339]  Joelle Pineau,et al.  Decoupling Dynamics and Reward for Transfer Learning , 2018, ICLR.

[340]  Marc G. Bellemare,et al.  Distributional Reinforcement Learning with Quantile Regression , 2017, AAAI.

[341]  R. Kilgour,et al.  Deer , 2019, Livestock Behaviour.

[342]  Amos J. Storkey,et al.  Exploration by Random Network Distillation , 2018, ICLR.

[343]  Wojciech Czarnecki,et al.  Multi-task Deep Reinforcement Learning with PopArt , 2019, AAAI.

[344]  Yevgen Chebotar,et al.  Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experience , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[345]  Elliot Meyerson,et al.  Evolving Deep Neural Networks , 2017, Artificial Intelligence in the Age of Neural Networks and Brain Computing.

[346]  Joelle Pineau,et al.  Combined Reinforcement Learning via Abstract Representations , 2019, AAAI.

[347]  Damien Ernst,et al.  On overfitting and asymptotic bias in batch reinforcement learning with partial observability , 2019, J. Artif. Intell. Res..

[348]  Nando de Freitas,et al.  Social Influence as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning , 2019, ICML.

[349]  Yuxi Li,et al.  Deep Reinforcement Learning , 2018, Reinforcement Learning for Cyber-Physical Systems.

[350]  Marc Pollefeys,et al.  Episodic Curiosity through Reachability , 2018, ICLR.

[351]  M. Eaton Superintelligence , 2020, Computers, People, and Thought.

[352]  John Schulman,et al.  Teacher–Student Curriculum Learning , 2017, IEEE Transactions on Neural Networks and Learning Systems.