Degeneracy and Its Impact on the Decoding of Sparse Quantum Codes

The well-documented capacity-approaching performance of sparse codes in the realm of classical communications has inspired the search for their quantum counterparts. Sparse quantum codes are generally built as the amalgamation of two robust classical codes and are decoded via classical decoding algorithms. However, the quantum paradigm presents phenomena that act in a deleterious manner on sparse quantum codes when they are decoded based on classical methodologies. One such phenomenon is known as degeneracy, and it is a major contributor to why sparse quantum codes do not entirely evoke the stupendous error correcting abilities of their classical counterparts. In this paper, we adopt a group theoretical approach to discuss the issue of degeneracy as it relates to sparse quantum codes. Furthermore, we compare the decoding process of sparse quantum codes with that of sparse classical codes, illustrating the challenges that appear in the quantum domain. Finally, we provide a detailed example to illustrate the effects of degeneracy on sparse quantum codes and the challenges of designing an optimum decoder for these schemes.

[1]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[2]  David Poulin,et al.  Quantum Serial Turbo Codes , 2009, IEEE Transactions on Information Theory.

[3]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[4]  Martin Rötteler,et al.  Non-catastrophic Encoders and Encoder Inverses for Quantum Convolutional Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[5]  Amir H. Banihashemi,et al.  On the Tanner Graph Cycle Distribution of Random LDPC, Random Protograph-Based LDPC, and Random Quasi-Cyclic LDPC Code Ensembles , 2017, IEEE Transactions on Information Theory.

[6]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[7]  J. Tillich,et al.  Constructions and performance of classes of quantum LDPC codes , 2005, quant-ph/0502086.

[8]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  Igor Devetak,et al.  Correcting Quantum Errors with Entanglement , 2006, Science.

[10]  M. Dugić On Quantum Decoherence , 2007 .

[11]  M Fitzi,et al.  Quantum solution to the Byzantine agreement problem. , 2001, Physical review letters.

[12]  I. Devetak,et al.  Entanglement-assisted quantum quasicyclic low-density parity-check codes , 2008, 0803.0100.

[13]  I. Fuss,et al.  Quantum Reed-Muller codes , 1997, quant-ph/9703045.

[14]  Nikolas P. Breuckmann,et al.  Balanced Product Quantum Codes , 2020, IEEE Transactions on Information Theory.

[15]  Gilles Zémor,et al.  Quantum Expander Codes , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[16]  Hans-Andrea Loeliger,et al.  Codes and iterative decoding on general graphs , 1995, Eur. Trans. Telecommun..

[17]  Pavel Panteleev,et al.  Degenerate Quantum LDPC Codes With Good Finite Length Performance , 2019, Quantum.

[18]  J. Garcia-Frías,et al.  On the Application of Error-Correcting Codes with Low-Density Generator Matrix over Different Quantum Channels , 2006 .

[19]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[20]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[21]  Jean-Pierre Tillich,et al.  Description of a quantum convolutional code. , 2003, Physical review letters.

[22]  Pedro M. Crespo,et al.  Pauli Channel Online Estimation Protocol for Quantum Turbo Codes , 2020, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[23]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[24]  Lajos Hanzo,et al.  Noncoherent Quantum Multiple Symbol Differential Detection for Wireless Systems , 2015, IEEE Access.

[25]  Matthew B. Hastings,et al.  Homological product codes , 2013, STOC.

[26]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[27]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[28]  Lajos Hanzo,et al.  The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure , 2015, IEEE Access.

[29]  Isaac L. Chuang,et al.  Framework for classifying logical operators in stabilizer codes , 2010, 1002.0085.

[30]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[31]  David Poulin Optimal and efficient decoding of concatenated quantum block codes , 2006 .

[32]  Jun Li,et al.  Channel identification and its impact on quantum LDPC code performance , 2012, 2012 Australian Communications Theory Workshop (AusCTW).

[33]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[34]  Emre Telatar,et al.  Mismatched decoding revisited: General alphabets, channels with memory, and the wide-band limit , 2000, IEEE Trans. Inf. Theory.

[35]  Markus Grassl,et al.  Convolutional and Tail-Biting Quantum Error-Correcting Codes , 2005, IEEE Transactions on Information Theory.

[36]  Igor Devetak,et al.  General entanglement-assisted quantum error-correcting codes , 2007, 2007 IEEE International Symposium on Information Theory.

[37]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[38]  Jean-Pierre Tillich,et al.  A class of quantum LDPC codes: construction and performances under iterative decoding , 2007, 2007 IEEE International Symposium on Information Theory.

[39]  J. Garcia-Frías,et al.  Optimization of LDGM-based quantum codes using Density Evolution , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[40]  K. Colladay,et al.  Rewiring stabilizer codes , 2017, New Journal of Physics.

[41]  Kejing Liu,et al.  Design of near-optimum quantum error-correcting codes based on generator and parity-check matrices of LDGM codes , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.

[42]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[43]  David Poulin,et al.  Hardness of Decoding Quantum Stabilizer Codes , 2013, IEEE Transactions on Information Theory.

[44]  Zunaira Babar,et al.  Entanglement-Assisted Quantum Turbo Codes , 2010, IEEE Transactions on Information Theory.

[45]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[46]  Shu Lin,et al.  Near Shannon limit quasi-cyclic low-density parity-check codes , 2004, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[47]  Gleb Kalachev,et al.  Quantum LDPC Codes With Almost Linear Minimum Distance , 2020, IEEE Transactions on Information Theory.

[48]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[49]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[50]  Adam D. Smith,et al.  Approximate Quantum Error-Correcting Codes and Secret Sharing Schemes , 2005, EUROCRYPT.

[51]  Jr. G. Forney,et al.  Viterbi Algorithm , 1973, Encyclopedia of Machine Learning.

[52]  M. Hastings Quantum belief propagation: An algorithm for thermal quantum systems , 2007, 0706.4094.

[53]  David Poulin,et al.  On the iterative decoding of sparse quantum codes , 2008, Quantum Inf. Comput..

[54]  Prakash Narayan,et al.  Reliable Communication Under Channel Uncertainty , 1998, IEEE Trans. Inf. Theory.

[55]  Iryna Andriyanova,et al.  Spatially coupled quantum LDPC codes , 2012, 2012 IEEE Information Theory Workshop.

[56]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[57]  Koen Bertels,et al.  Decoding small surface codes with feedforward neural networks , 2017, 1705.00857.

[58]  D. Poulin,et al.  Quantum Graphical Models and Belief Propagation , 2007, 0708.1337.

[59]  Gilles Zémor,et al.  Quantum LDPC Codes With Positive Rate and Minimum Distance Proportional to the Square Root of the Blocklength , 2009, IEEE Transactions on Information Theory.

[60]  Jun Heo,et al.  Improved Belief Propagation (BP) Decoding for LDPC Codes with a large number of short cycles , 2006, 2006 IEEE 63rd Vehicular Technology Conference.

[61]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[62]  Alex R. Rigby,et al.  Modified belief propagation decoders for quantum low-density parity-check codes , 2019, Physical Review A.

[63]  Pedro M. Crespo,et al.  Approximating Decoherence Processes for the Design and Simulation of Quantum Error Correction Codes on Classical Computers , 2020, IEEE Access.

[64]  Hideki Imai,et al.  Quantum Quasi-Cyclic LDPC Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[65]  R. Feynman Simulating physics with computers , 1999 .

[66]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[67]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[68]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[69]  S. Le Goff,et al.  Performance study of non-binary LDPC Codes over GF(q) , 2008, 2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing.

[70]  Pedro M. Crespo,et al.  On the Performance of Interleavers for Quantum Turbo Codes , 2019, Entropy.

[71]  Shashi Kiran Chilappagari,et al.  On the Construction of Structured LDPC Codes Free of Small Trapping Sets , 2012, IEEE Transactions on Information Theory.

[72]  Shlomo Shamai,et al.  On information rates for mismatched decoders , 1994, IEEE Trans. Inf. Theory.

[73]  Earl T. Campbell,et al.  Decoding across the quantum low-density parity-check code landscape , 2020, Physical Review Research.

[74]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[75]  Jun Li,et al.  Improved quantum LDPC decoding strategies for the misidentified quantum depolarization channel , 2012, 2016 24th European Signal Processing Conference (EUSIPCO).

[76]  Jon-Lark Kim,et al.  Explicit construction of families of LDPC codes with no 4-cycles , 2004, IEEE Transactions on Information Theory.

[77]  Pedro M. Crespo,et al.  Performance of non-CSS LDGM-based quantum codes over the misidentified depolarizing channel , 2020, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[78]  P. Shor,et al.  QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.

[79]  Lajos Hanzo,et al.  EXIT-Chart-Aided Near-Capacity Quantum Turbo Code Design , 2015, IEEE Transactions on Vehicular Technology.

[80]  J. Garcia-Frías,et al.  Approach for the construction of non-Calderbank-Steane-Shor low-density-generator-matrix–based quantum codes , 2020 .

[81]  Igor Devetak,et al.  Catalytic Quantum Error Correction , 2014, IEEE Transactions on Information Theory.

[82]  Soon Xin Ng,et al.  Fifteen Years of Quantum LDPC Coding and Improved Decoding Strategies , 2015, IEEE Access.

[83]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[84]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[85]  Pan Hu,et al.  Improved method for detecting the short cycles of LDPC codes , 2010, 2010 IEEE International Conference on Information Theory and Information Security.

[86]  Josu Etxezarreta Martinez,et al.  Design of low-density-generator-matrix–based quantum codes for asymmetric quantum channels , 2021 .

[87]  Swanand Kadhe,et al.  Logical Clifford Synthesis for Stabilizer Codes , 2019, IEEE Transactions on Quantum Engineering.

[88]  Amir H. Banihashemi,et al.  Counting Short Cycles of Quasi Cyclic Protograph LDPC Codes , 2012, IEEE Communications Letters.

[89]  Lajos Hanzo,et al.  Quantum-Assisted Routing Optimization for Self-Organizing Networks , 2014, IEEE Access.

[90]  J. Smolin,et al.  Degenerate quantum codes for Pauli channels. , 2006, Physical review letters.

[91]  Hideki Imai,et al.  Spatially coupled quasi-cyclic quantum LDPC codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[92]  Baoming Bai,et al.  Enhanced Feedback Iterative Decoding of Sparse Quantum Codes , 2009, IEEE Transactions on Information Theory.

[93]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[94]  Jeongwan Haah,et al.  Fiber bundle codes: breaking the n1/2 polylog(n) barrier for Quantum LDPC codes , 2020, STOC.

[95]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[96]  Gottfried Lechner,et al.  The effect of cycles on binary message-passing decoding of LDPC codes , 2010, 2010 Australian Communications Theory Workshop (AusCTW).

[97]  Elwyn R. Berlekamp,et al.  On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[98]  H. Lou,et al.  Quantum error-correction using codes with low-density generator matrix , 2005, IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, 2005..

[99]  Robert C. Williamson,et al.  Loop removal from LDPC codes , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[100]  David Declercq,et al.  Decoding Algorithms for Nonbinary LDPC Codes Over GF$(q)$ , 2007, IEEE Transactions on Communications.

[101]  Hideki Imai,et al.  Non-binary quasi-cyclic quantum LDPC codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[102]  Lajos Hanzo,et al.  Duality of Quantum and Classical Error Correction Codes: Design Principles and Examples , 2019, IEEE Communications Surveys & Tutorials.

[103]  F. Gall,et al.  NP-hardness of decoding quantum error-correction codes , 2010, 1009.1319.

[104]  Nithin Raveendran,et al.  Trapping Sets of Quantum LDPC Codes , 2020, Quantum.

[105]  Pedro M. Crespo,et al.  Depolarizing Channel Mismatch and Estimation Protocols for Quantum Turbo Codes , 2019, Entropy.

[106]  David Poulin,et al.  Degenerate Viterbi Decoding , 2012, IEEE Transactions on Information Theory.

[107]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[108]  Joachim Hagenauer,et al.  Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[109]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[110]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[111]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[112]  Richard D. Wesel,et al.  Selective avoidance of cycles in irregular LDPC code construction , 2004, IEEE Transactions on Communications.