MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data

Abstract The widespread application of next-generation sequencing technologies has revolutionized microbiome research by enabling high-throughput profiling of the genetic contents of microbial communities. How to analyze the resulting large complex datasets remains a key challenge in current microbiome studies. Over the past decade, powerful computational pipelines and robust protocols have been established to enable efficient raw data processing and annotation. The focus has shifted toward downstream statistical analysis and functional interpretation. Here, we introduce MicrobiomeAnalyst, a user-friendly tool that integrates recent progress in statistics and visualization techniques, coupled with novel knowledge bases, to enable comprehensive analysis of common data outputs produced from microbiome studies. MicrobiomeAnalyst contains four modules - the Marker Data Profiling module offers various options for community profiling, comparative analysis and functional prediction based on 16S rRNA marker gene data; the Shotgun Data Profiling module supports exploratory data analysis, functional profiling and metabolic network visualization of shotgun metagenomics or metatranscriptomics data; the Taxon Set Enrichment Analysis module helps interpret taxonomic signatures via enrichment analysis against >300 taxon sets manually curated from literature and public databases; finally, the Projection with Public Data module allows users to visually explore their data with a public reference data for pattern discovery and biological insights. MicrobiomeAnalyst is freely available at http://www.microbiomeanalyst.ca.

[1]  Jesse R. Zaneveld,et al.  Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences , 2013, Nature Biotechnology.

[2]  J. Petrosino,et al.  The dynamics of a family’s gut microbiota reveal variations on a theme , 2014, Microbiome.

[3]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[4]  P. Filzmoser,et al.  Univariate Statistical Analysis of Environmental (compositional) Data: Problems and Possibilities , 2009 .

[5]  David S. Wishart,et al.  METAGENassist: a comprehensive web server for comparative metagenomics , 2012, Nucleic Acids Res..

[6]  David S. Wishart,et al.  MetaboAnalyst 3.0—making metabolomics more meaningful , 2015, Nucleic Acids Res..

[7]  Peter Meinicke,et al.  Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data , 2015, Bioinform..

[8]  Hans Bisgaard,et al.  Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies , 2016, Microbiome.

[9]  Jens Roat Kultima,et al.  An integrated catalog of reference genes in the human gut microbiome , 2014, Nature Biotechnology.

[10]  Patrick D. Schloss,et al.  Looking for a Signal in the Noise: Revisiting Obesity and the Microbiome , 2016, mBio.

[11]  Jianguo Xia,et al.  NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data , 2015, Nature Protocols.

[12]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[13]  Qinghua Cui,et al.  MicroPattern: a web-based tool for microbe set enrichment analysis and disease similarity calculation based on a list of microbes , 2017, Scientific Reports.

[14]  Susan P. Holmes,et al.  Shiny-phyloseq: Web application for interactive microbiome analysis with provenance tracking , 2014, Bioinform..

[15]  Philip M. Dixon VEGAN, a package of R functions for community ecology , 2003 .

[16]  L. Ursell,et al.  The intestinal metabolome: an intersection between microbiota and host. , 2014, Gastroenterology.

[17]  R. Knight,et al.  The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice , 2009, Science Translational Medicine.

[18]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[19]  Gregory B. Gloor,et al.  Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data. , 2016, Canadian journal of microbiology.

[20]  C. Huttenhower,et al.  Metagenomic biomarker discovery and explanation , 2011, Genome Biology.

[21]  Susan Holmes,et al.  phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data , 2013, PloS one.

[22]  Andreas Wilke,et al.  phylogenetic and functional analysis of metagenomes , 2022 .

[23]  Nikos Kyrpides,et al.  The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification , 2014, Nucleic Acids Res..

[24]  Ronan M. T. Fleming,et al.  Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota , 2016, Nature Biotechnology.

[25]  M. Pop,et al.  Robust methods for differential abundance analysis in marker gene surveys , 2013, Nature Methods.

[26]  Rida Assaf,et al.  Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center , 2016, Nucleic Acids Res..

[27]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[28]  L. T. Angenent,et al.  Host Remodeling of the Gut Microbiome and Metabolic Changes during Pregnancy , 2012, Cell.

[29]  W. R. Wikoff,et al.  Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites , 2009, Proceedings of the National Academy of Sciences.

[30]  Alexander F. Auch,et al.  MEGAN analysis of metagenomic data. , 2007, Genome research.

[31]  A. Murat Eren,et al.  VAMPS: a website for visualization and analysis of microbial population structures , 2014, BMC Bioinformatics.

[32]  Paul M. Ruegger,et al.  Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships , 2013, Microbiome.

[33]  Peter Meinicke,et al.  Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data , 2015, Bioinform..

[34]  Jesse R. Zaneveld,et al.  Normalization and microbial differential abundance strategies depend upon data characteristics , 2017, Microbiome.

[35]  R. Knight,et al.  Supervised classification of human microbiota. , 2011, FEMS microbiology reviews.

[36]  Rob Knight,et al.  From Sample to Multi-Omics Conclusions in under 48 Hours , 2016, mSystems.

[37]  David S. Wishart,et al.  INMEX—a web-based tool for integrative meta-analysis of expression data , 2013, Nucleic Acids Res..

[38]  Hongzhe Li Microbiome, Metagenomics, and High-Dimensional Compositional Data Analysis , 2015 .

[39]  Robert G. Beiko,et al.  STAMP: statistical analysis of taxonomic and functional profiles , 2014, Bioinform..

[40]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[41]  Gary D Bader,et al.  Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation , 2010, PloS one.

[42]  Andreas Wilke,et al.  The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome , 2012, GigaScience.

[43]  Paula Ribeiro,et al.  miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis , 2016, Nucleic Acids Res..

[44]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[45]  I-Min A. Chen,et al.  IMG/M: integrated genome and metagenome comparative data analysis system , 2016, Nucleic Acids Res..

[46]  Mihai Pop,et al.  Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples , 2009, PLoS Comput. Biol..

[47]  Martin Hartmann,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[48]  Qunyuan Zhang,et al.  Persistent Gut Microbiota Immaturity in Malnourished Bangladeshi Children , 2014, Nature.

[49]  P. Dixon VEGAN, a package of R functions for community ecology , 2003 .

[50]  Robert D. Finn,et al.  EBI metagenomics in 2016 - an expanding and evolving resource for the analysis and archiving of metagenomic data , 2015, Nucleic Acids Res..

[51]  S. Kanaya,et al.  KEGGscape: a Cytoscape app for pathway data integration , 2014, F1000Research.

[52]  Andreas Wilke,et al.  The MG-RAST metagenomics database and portal in 2015 , 2015, Nucleic Acids Res..

[53]  Susan P. Holmes,et al.  Waste Not , Want Not : Why Rarefying Microbiome Data is Inadmissible . October 1 , 2013 , 2013 .