Multiplexing chaotic signals in the presence of noise

In this report we discuss the problem of separating the sum of chaotic signals into the individual components with a procedure of backward iteration of the mapping equations describing the chaotic sources. We show that the proposed approach has good stability in respect to additive external noise.

[1]  Michael Peter Kennedy,et al.  Chaos shift keying : modulation and demodulation of a chaotic carrier using self-sychronizing chua"s circuits , 1993 .

[2]  Riccardo Rovatti,et al.  Chaotic complex spreading sequences for asynchronous DS-CDMA. I. System modeling and results , 1997 .

[3]  A. Dmitriev,et al.  MAPS WITH STORED INFORMATION IN MULTIPLE-ACCESS COMMUNICATIONS SYSTEMS , 1999 .

[4]  U. Parlitz,et al.  Robust communication based on chaotic spreading sequences , 1994 .

[5]  Clare D. McGillem,et al.  A chaotic direct-sequence spread-spectrum communication system , 1994, IEEE Trans. Commun..

[6]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[7]  L. Tsimring,et al.  Multiplexing chaotic signals using synchronization , 1996 .

[8]  M. Rabinovich,et al.  Stochastic synchronization of oscillation in dissipative systems , 1986 .

[9]  Martin Hasler,et al.  Multiple access communications using chaotic signals , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[10]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[11]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[12]  Leon O. Chua,et al.  Experimental Demonstration of Secure Communications via Chaotic Synchronization , 1992, Chua's Circuit.

[13]  N. N. Verichev,et al.  Stochastic synchronization of oscillations in dissipative systems , 1986 .