Synchronous-Logic and Globally-Asynchronous-Locally-Synchronous (GALS) Acoustic Digital Signal Processors

We design an Acoustic Digital Signal Processor (ADSP) SoC, the primary signal processing module of an acoustic signal detection system, based on two design approaches: fully-synchronous (Fully-Sync), and globally-asynchronous-locally-synchronous (GALS). The emphasis of the ADSP designs is low power operation where both designs embody modular-level and circuit-level clock gating techniques. For sake of fair benchmarking, both ADSPs have identical functionality, are designed using the same 130 nm CMOS process, and largely embody the same library cells (save that for the signaling protocols in the GALS ADSP). The GALS ADSP is substantially more power-efficient (the Fully-Sync ADSP dissipates 1.9× more power @ nominal VDD = 1.2 V) and the only cost is the marginally higher (1.02×) IC area. Its higher power efficiency is largely attributed to the exploitation of asynchronous signaling between circuit modules by means of more finely-grained partitioning of the clock domains; intra-circuit signaling therein remains fully-sync. This provides for the ensuing simplification of the clocking infrastructure and subsequent reduction of the global clock rate. The prototype GALS ADSP is able to operate to specifications throughout the lifespan of the battery (VDD = 0.9 V-1.4 V, in part depicting Dynamic Voltage Scaling attributes) and at VDD = 1.2 V, it dissipates 186 μW.

[1]  Sohini Dasgupta,et al.  Comparative analysis of GALS clocking schemes , 2007, IET Comput. Digit. Tech..

[2]  Kaushik Roy,et al.  Exploring Asynchronous Design Techniques for Process-Tolerant and Energy-Efficient Subthreshold Operation , 2010, IEEE Journal of Solid-State Circuits.

[3]  Kwen-Siong Chong,et al.  A micropower low-voltage multiplier with reduced spurious switching , 2005, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[4]  Ryan W. Apperson,et al.  AsAP: An Asynchronous Array of Simple Processors , 2008, IEEE Journal of Solid-State Circuits.

[5]  S. Menzl,et al.  A 720 /spl mu/W 50 MOPs 1V DSP for a hearing aid chip set , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[6]  Kaushik Roy,et al.  A power-aware GALS architecture for real-time algorithm-specific tasks , 2005, Sixth international symposium on quality electronic design (isqed'05).

[7]  P.A. Beerel,et al.  High performance asynchronous design using single-track full-buffer standard cells , 2006, IEEE Journal of Solid-State Circuits.

[8]  Ran Ginosar,et al.  An asynchronous instruction length decoder , 2001, IEEE J. Solid State Circuits.

[9]  Alain J. Martin,et al.  Three generations of asynchronous microprocessors , 2003, IEEE Design & Test of Computers.

[10]  Steve Furber,et al.  Principles of Asynchronous Circuit Design: A Systems Perspective , 2010 .

[11]  Resve Saleh,et al.  Analysis and design of digital integrated circuits : in deep submicron technology , 2003 .

[12]  Michael Fritze,et al.  Introduction to Special Issue on Circuit Technology for ULP , 2010, Proc. IEEE.

[13]  Zhiyi Yu,et al.  A 167-Processor Computational Platform in 65 nm CMOS , 2009, IEEE Journal of Solid-State Circuits.

[14]  Ran Ginosar,et al.  Data synchronization issues in GALS SoCs , 2004, 10th International Symposium on Asynchronous Circuits and Systems, 2004. Proceedings..

[15]  Eckhard Grass,et al.  Globally Asynchronous, Locally Synchronous Circuits: Overview and Outlook , 2007, IEEE Design & Test of Computers.

[16]  H. Lhermet,et al.  An Asynchronous Power Aware and Adaptive NoC Based Circuit , 2009, IEEE Journal of Solid-State Circuits.

[17]  G. Magklis,et al.  Dynamic Frequency and Voltage Scaling for a Multiple-Clock-Domain Microprocessor , 2003, IEEE Micro.

[18]  Kwen-Siong Chong,et al.  A 16-Channel Low-Power Nonuniform Spaced Filter Bank Core for Digital Hearing Aids , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[19]  Jens Sparsø,et al.  Principles of Asynchronous Circuit Design , 2001 .

[20]  Kwen-Siong Chong,et al.  Energy-Efficient Synchronous-Logic and Asynchronous-Logic FFT/IFFT Processors , 2007, IEEE Journal of Solid-State Circuits.

[21]  C. Toumazou,et al.  A micropower centroiding vision processor , 2006, IEEE Journal of Solid-State Circuits.

[22]  Warren P. Snapp,et al.  Ultralow-Power Operation in Subthreshold Regimes Applying Clockless Logic , 2010, Proceedings of the IEEE.

[23]  S. Naffziger,et al.  A 90-nm variable frequency clock system for a power-managed itanium architecture processor , 2006, IEEE Journal of Solid-State Circuits.

[24]  Timo Hämäläinen,et al.  Comparison of GALS and Synchronous Architectures with MPEG-4 Video Encoder on Multiprocessor System-on-Chip FPGA , 2006, 9th EUROMICRO Conference on Digital System Design (DSD'06).

[25]  J. S. Chang,et al.  A micropower-compatible time-multiplexed SC speech spectrum analyzer design , 1993 .

[26]  Yee William Li,et al.  High-throughput asynchronous datapath with software-controlled voltage scaling , 2004, IEEE Journal of Solid-State Circuits.

[27]  Alain J. Martin,et al.  Asynchronous Techniques for System-on-Chip Design , 2006, Proceedings of the IEEE.

[28]  Richard York,et al.  ARM996HS: The First Licensable, Clockless 32-Bit Processor Core , 2007, IEEE Micro.

[29]  Radu Marculescu,et al.  Design and Management of Voltage-Frequency Island Partitioned Networks-on-Chip , 2009, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[30]  Luis A. Plana,et al.  A GALS Infrastructure for a Massively Parallel Multiprocessor , 2007, IEEE Design & Test of Computers.

[31]  Hoi-Jun Yoo,et al.  A 0.9 V 96 $\mu$W Fully Operational Digital Hearing Aid Chip , 2007, IEEE Journal of Solid-State Circuits.

[32]  Alexander Taubin,et al.  A Highly Scalable GALS Crossbar Using Token Ring Arbitration , 2007, IEEE Design & Test of Computers.

[33]  Chen-Yi Lee,et al.  A 2.4-Gsample/s DVFS FFT Processor for MIMO OFDM Communication Systems , 2008, IEEE Journal of Solid-State Circuits.