Extended RKN-type methods for numerical integration of perturbed oscillators
暂无分享,去创建一个
Xinyuan Wu | Yonglei Fang | Xiong You | Hongli Yang | Xinyuan Wu | Yonglei Fang | Hongli Yang | Xiong You
[1] T. E. Simos,et al. An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .
[2] J. M. Franco. Embedded Pairs of Explicit ARKN Methods for the Numerical Integration of Perturbed Oscillators , 2003 .
[3] Liviu Gr Ixaru,et al. Numerical methods for differential equations and applications , 1984 .
[4] W. Gautschi. Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .
[5] Xinyuan Wu,et al. Trigonometrically-fitted ARKN methods for perturbed oscillators , 2008 .
[6] J. M. Franco. A 5(3) pair of explicit ARKN methods for the numerical integration of perturbed oscillators , 2003 .
[7] T. E. Simos,et al. Controlling the error growth in long–term numerical integration of perturbed oscillations in one or several frequencies , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[8] J. M. Franco. New methods for oscillatory systems based on ARKN methods , 2006 .
[9] L.Gr. Ixaru,et al. Operations on oscillatory functions , 1997 .
[10] Xinyuan Wu,et al. A new pair of explicit ARKN methods for the numerical integration of general perturbed oscillators , 2007 .
[11] G. Dahlquist. Stability and error bounds in the numerical integration of ordinary differential equations , 1961 .
[12] Xinyuan Wu,et al. A trigonometrically fitted explicit Numerov-type method for second-order initial value problems with oscillating solutions , 2008 .
[13] Pablo Martín,et al. A new family of Runge–Kutta type methods for the numerical integration of perturbed oscillators , 1999, Numerische Mathematik.
[14] H. De Meyer,et al. Exponentially-fitted explicit Runge–Kutta methods , 1999 .
[15] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[16] J. Butcher. The Numerical Analysis of Ordinary Di erential Equa-tions , 1986 .
[17] J. M. Franco. Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators , 2002 .
[18] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[19] G. Vanden Berghe,et al. Exponential fitted Runge--Kutta methods of collocation type: fixed or variable knot points? , 2003 .
[20] G. Dahlquist. Convergence and stability in the numerical integration of ordinary differential equations , 1956 .
[21] P. Henrici. Discrete Variable Methods in Ordinary Differential Equations , 1962 .
[22] Liviu Gr. Ixaru,et al. P-stability and exponential-fitting methods for y″″ = f(x, y) , 1996 .
[23] S. Cox,et al. Exponential Time Differencing for Stiff Systems , 2002 .
[24] Brynjulf Owren,et al. B-series and Order Conditions for Exponential Integrators , 2005, SIAM J. Numer. Anal..
[25] Beatrice Paternoster,et al. Runge-Kutta(-Nystro¨m) methods for ODEs with periodic solutions based on trigonometric polynomials , 1998 .
[26] Tom Lyche,et al. Chebyshevian multistep methods for ordinary differential equations , 1972 .
[27] Xinyuan Wu,et al. Note on derivation of order conditions for ARKN methods for perturbed oscillators , 2009, Comput. Phys. Commun..
[28] E. Stiefel. Linear And Regular Celestial Mechanics , 1971 .
[29] J. M. Franco. Exponentially fitted explicit Runge-Kutta-Nyström methods , 2004 .
[30] Warren P. Johnson. The Curious History of Faà di Bruno's Formula , 2002, Am. Math. Mon..
[31] H. De Meyer,et al. Exponentially fitted Runge-Kutta methods , 2000 .