Quantitative estimates of unique continuation for parabolic equations, determination of unknown time-varying boundaries and optimal stability estimates

In this article, we review the main results concerning the issue of stability for the determination of unknown boundary portions of a thermic conducting body from Cauchy data for parabolic equations. We give detailed and self-contained proofs. We prove that such problems are severely ill-posed in the sense that under a priori regularity assumptions on the unknown boundaries, up to any finite order of differentiability, the continuous dependence of an unknown boundary from the measured data is, at best, of logarithmic type. We review the main results concerning quantitative estimates of unique continuation for solutions to second-order parabolic equations. We give a detailed proof of a Carleman estimate crucial for the derivation of the stability estimates.

[1]  C. Sogge A unique continuation theorem for second order parabolic differential operators , 1990 .

[2]  G. Inglese,et al.  An inverse problem in corrosion detection , 1997 .

[3]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[4]  G. Alessandrini,et al.  Remark on the strong unique continuation property for parabolic operators , 2003 .

[5]  G. Inglese,et al.  Corrosion detection in conducting boundaries , 2004 .

[6]  Lawrence D. Favro,et al.  Inverse scattering algorithm applied to infrared thermal wave images , 1993 .

[7]  Xu-Yan Chen A strong unique continuation theorem for parabolic equations , 1998 .

[8]  B. Amonov The stability of the solution of the Cauchy problem for a second-order parabolic equation with data on a time-like surface , 1972 .

[9]  M. Tsuchiya,et al.  An estimation problem for the shape of a domain varying with time via parabolic equations , 2007 .

[10]  Heinz W. Engl,et al.  Some inverse problems for a nonlinear parabolic equation connected with continuous casting of steel: Stability estimates and regularization ∗ , 1990 .

[11]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[13]  O. Oleinik,et al.  GENERALIZED ANALYTICITY AND SOME RELATED PROPERTIES OF SOLUTIONS OF ELLIPTIC AND PARABOLIC EQUATIONS , 1974 .

[14]  M. M. Lavrentʹev,et al.  Ill-Posed Problems of Mathematical Physics and Analysis , 1986 .

[15]  C. Kenig,et al.  A Note on Boundary Unique Contination for Harmonic Functions in Non-Smooth Domains , 1998 .

[16]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[17]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[18]  Dario Fasino,et al.  An inverse Robin problem for Laplace's equation: theoretical results and numerical methods , 1999 .

[19]  R. J. Glagoleva SOME PROPERTIES OF THE SOLUTIONS OF A LINEAR SECOND ORDER PARABOLIC EQUATION , 1967 .

[20]  Conditional Stability in an Inverse Problem of Determining a Non-smooth Boundary , 2000 .

[21]  Masaru Ikehata Virtual signal in the heat equation and the enclosure method , 2007 .

[22]  L. Hörmander Linear Partial Differential Operators , 1963 .

[23]  F. Lin A uniqueness theorem for parabolic equations , 1990 .

[24]  Christopher D. Sogge,et al.  STRONG UNIQUENESS THEOREMS FOR SECOND ORDER ELLIPTIC DIFFERENTIAL EQUATIONS , 1990 .

[25]  M. Di Cristo,et al.  Stability properties of an inverse parabolic problem with unknown boundaries , 2006 .

[26]  S. B. Childs,et al.  INVERSE PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS. , 1968 .

[27]  A. Jeffrey THE ONE-DIMENSIONAL HEAT EQUATION: (Encyclopedia of Mathematics and Its Applications, 23) , 1985 .

[28]  Mohamed Jaoua,et al.  Identifiabilité de frontière inaccessible par des mesures de surface , 1993 .

[29]  C. Denson Hill,et al.  Parabolic equations in one space variable and the non-characteristic cauchy problem , 1967 .

[30]  Martin Burger,et al.  Identification of doping profiles in semiconductor devices , 2001 .

[31]  Michael V. Klibanov,et al.  Carleman estimates for coefficient inverse problems and numerical applications , 2004 .

[32]  S. Vessella,et al.  Inverse doping problems for a P-N junction , 2006 .

[33]  Sergio Vessella,et al.  Lipschitz stability for a stationary 2D inverse problem with unknown polygonal boundary , 2006 .

[34]  A. Erdélyi,et al.  Tables of integral transforms , 1955 .

[35]  Maurice Gevrey,et al.  Sur la nature analytique des solutions des équations aux dérivées partielles. Premier mémoire , 1918 .

[36]  L. Escauriaza,et al.  C1,? domains and unique continuation at the boundary , 1997 .

[37]  Kurt Bryan,et al.  An Inverse Problem in Thermal Imaging , 1994, SIAM J. Appl. Math..

[38]  K. Bryan,et al.  Uniqueness for a Boundary Identification Problem in Thermal Imaging , 1996 .

[39]  C. Kenig,et al.  Convex domains and unique continuation at the boundary , 1995 .

[40]  A. Morassi,et al.  Uniqueness and Stability in Determining a Rigid Inclusion in an Elastic Body , 2009 .

[41]  Claude Zuily,et al.  Uniqueness and Non-Uniqueness in the Cauchy Problem , 1983 .

[42]  A stability result in the localization of cavities in a thermic conducting medium , 2002 .

[43]  T. Kusano ON A SEMI-LINEAR PARTIAL DIFFERENTIAL EQUATION OF PARABOLIC TYPE , 1961 .

[44]  L. Nirenberg Uniqueness in Cauchy problems for differential equations with constant leading coefficients , 1957 .

[45]  R. Potthast,et al.  Unification of the Probe and Singular Sources Methods for the Inverse Boundary Value Problem by the No-Response Test , 2006 .

[46]  A. Bukhgeǐm On a class of Volterra equations of the first kind , 1972 .

[47]  Alessandra Lunardi An Introduction to Parabolic Moving Boundary Problems , 2004 .

[48]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[49]  S. Vessella Carleman Estimates, Optimal Three Cylinder Inequality, and Unique Continuation Properties for Solutions to Parabolic Equations , 2003 .

[50]  O Yu Emanuilov,et al.  Controllability of parabolic equations , 1995 .

[51]  L. Payne Improved Stability Estimates for Classes of Illposed Cauchy Problems , 1985 .

[52]  S. Rionero,et al.  On an ILL-posed problem in nonlinear heat conduction , 2000 .

[53]  Heinz W. Engl,et al.  On an Inverse Problem for a Nonlinear Heat Equation Connected with Continuous Casting of Steel , 1987 .

[54]  Ermanno G. Grinzato,et al.  Monitoring of ancient buildings by the thermal method , 2002 .

[55]  Jim Douglas,et al.  The Cauchy Problem for the Heat Equation , 1967 .

[56]  C. Atkinson,et al.  An inverse boundary problem for the steady-diffusion equation with moving boundaries with applications to the pearlite–austenite transformation in steel , 2002 .

[57]  Y. Hon,et al.  Conditional stability estimation for an inverse boundary problem with non-smooth boundary in ℛ³ , 2001 .

[58]  C. Pucci Alcune limitazioni per le soluzioni di equazioni paraboliche , 1959 .

[59]  Fritz John,et al.  Continuous dependence on data for solutions of partial differential equations with a prescribed bound , 1960 .

[60]  D. Colton The Noncharacteristic Cauchy Problem for Parabolic Equations in One Space Variable , 1974 .

[61]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[62]  Victor Isakov,et al.  Carleman Type Estimates in an Anisotropic Case and Applications , 1993 .

[63]  STABILITY OF THE SOLUTIONS OF AN INVERSE PROBLEM FOR LAPLACE'S EQUATION IN A THIN STRIP , 2001 .

[64]  J. Szarski,et al.  A unique continuation theorem for exterior differential forms on Riemannian manifolds , 1962 .

[65]  Xavier Maldague,et al.  Applications of infrared thermography in nondestructive evaluation , 2000 .

[66]  S. Vessella,et al.  Doubling properties of caloric functions , 2006, math/0611462.

[67]  Igor Kukavica,et al.  Quantitative uniqueness for second-order elliptic operators , 1998 .

[68]  S. Vessella Stability estimates in an inverse problem for a three-dimensional heat equation , 1997 .

[69]  Rainer Kress,et al.  On the numerical solution of an inverse boundary value problem for the heat equation , 1998 .

[70]  H. Engl,et al.  Identification of heat transfer functions in continuous casting of steel by regularization , 2000 .

[71]  On an inverse problem arising in continuous casting of steel billets , 1995 .

[72]  M. Protter Properties of Solutions of Parabolic Equations and Inequalities , 1961, Canadian Journal of Mathematics.

[73]  Fadil Santosa,et al.  Nondestructive evaluation of corrosion damage using electrostatic measurements , 1995 .

[74]  Hidehiko Yamabe,et al.  A unique continuation theorem for solutions of a parabolic differential equation , 1958 .

[75]  S. Vessella A domain identification problem for the heat equation — Hölder stability estimate , 1995 .

[76]  Luca Rondi OPTIMAL STABILITY ESTIMATES FOR THE DETERMINATION OF DEFECTS BY ELECTROSTATIC MEASUREMENTS , 1999 .

[77]  F. J. Fernández Unique Continuation for Parabolic Operators. II , 2003 .

[78]  Luca Rondi,et al.  Examples of exponential instability for inverse inclusion and scattering problems , 2003 .

[79]  L. Escauriaza,et al.  Unique continuation for parabolic operators , 2003 .

[80]  Victor Isakov,et al.  Some inverse problems for the diffusion equation , 1999 .

[81]  H. Lars A uniqueness theorem for second order hyperbolic differential equations , 1992 .

[82]  Luis Escauriaza,et al.  BACKWARD UNIQUENESS FOR THE HEAT OPERATOR IN A HALF-SPACE , 2004 .

[83]  P. Manselli,et al.  On Continuous Dependence, on Noncharacteristic Cauchy Data, for Level Lines of Solutions of the Heat Equation , 1991 .

[84]  Elena Beretta,et al.  Optimal stability for inverse elliptic boundary value problems with unknown boundaries , 2000 .

[85]  Jin Cheng,et al.  Uniqueness and stability for an inverse problem of determining a part of boundary , 1998 .

[86]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[87]  Luca Rondi,et al.  Optimal Stability for the Inverse Problemof Multiple Cavities , 2001 .

[88]  Peter Knabner,et al.  Stabilization of ill-posed Cauchy problems for parabolic equations , 1987 .

[89]  V. Isakov On uniqueness of obstacles and boundary conditions from restricted dynamical and scattering data , 2008 .

[90]  J. Cannon A priori estimate for continuation of the solution of the heat equation in the space variable , 1964 .

[91]  Keith Miller,et al.  Nonunique continuation for uniformly parabolic and elliptic equations in self-adjoint divergence form with Hölder continuous coefficients , 1973 .

[92]  E. Landis SOME PROBLEMS OF THE QUALITATIVE THEORY OF SECOND ORDER ELLIPTIC EQUATIONS (CASE OF SEVERAL INDEPENDENT VARIABLES) , 1963 .

[93]  Ermanno G. Grinzato,et al.  Surface transient temperature inversion for hidden corrosion characterisation: theory and applications , 1996 .

[94]  Structure characterization with thermal wave imaging , 1993 .

[95]  F. Lin,et al.  Monotonicity properties of variational integrals, ap weights and unique continuation , 1986 .

[96]  D. Hào A non-characteristic Cauchy problem for linear parabolic equations and related inverse problems: I. Solvability , 1994 .

[97]  T. Hohage,et al.  Detecting corrosion using thermal measurements , 2007 .

[98]  Fadil Santosa,et al.  A Method for Imaging Corrosion Damage in Thin Plates from Electrostatic Data , 1995 .

[99]  L. Hormander Uniqueness theorems for second order elliptic difierential equations , 1983 .

[100]  Jean-Claude Saut,et al.  Unique continuation for some evolution equations , 1987 .

[101]  Herbert Koch,et al.  Carleman Estimates and Unique Continuation for Second Order Parabolic Equations with Nonsmooth Coefficients , 2007, 0704.1349.

[102]  A. A. Mufti,et al.  A survey of computational efforts in the field of corrosion engineering , 1986 .

[103]  G. Alessandrini,et al.  Local behaviour of solutions to parabolic equations parabolic equations , 1988 .

[104]  Cramer K. Elliott,et al.  Thermal Characterization of Defects in Aircraft Structures Via Spatially Controlled Heat Application , 1996 .

[105]  A. Varin Three-cylinder theorem for a certain class of semilinear parabolic equations , 1992 .

[106]  Elena Beretta,et al.  Stable determination of boundaries from Cauchy data , 1999 .

[107]  A. Morassi,et al.  Stable determination of cavities in elastic bodies , 2004 .

[108]  Eva Sincich,et al.  Lipschitz stability for the inverse Robin problem , 2007 .

[109]  Kurt Bryan,et al.  Reconstruction of an unknown boundary portion from Cauchy data in n dimensions , 2005 .

[110]  J. A. Spim,et al.  Evaluation of heat transfer coefficients along the secondary cooling zones in the continuous casting of steel billets , 2006 .

[111]  D. Aronson,et al.  Non-negative solutions of linear parabolic equations , 1968 .

[112]  A. Boulanger Sur l'équation de la propagation de la chaleur , 1897 .

[113]  K. Nyström,et al.  Unique continuation on the boundary for Dini domains , 1998 .

[114]  François Treves Linear Partial Differential Equations , 1970 .

[115]  Niculae Mandache,et al.  Exponential instability in an inverse problem for the Schrodinger equation , 2001 .

[116]  Chi-Cheung Poon Qnique Continuation for , 1996 .

[117]  Kurt Bryan,et al.  Stability and reconstruction for an inverse problem for the heat equation , 1998 .

[118]  Ravi P. Agarwal,et al.  The One-Dimensional Heat Equation , 2009 .

[119]  M. Protter,et al.  Unique continuation for parabolic differential equations and inequalities , 1961 .

[120]  Yoshikazu Giga,et al.  Nonlinear Partial Differential Equations , 2004 .

[121]  Giovanni Alessandrini Examples of instability in inverse boundary-value problems , 1997 .

[122]  Michael V. Klibanov,et al.  Inverse Problems and Carleman Estimates , 1992 .

[123]  S. Vessella,et al.  Quantitative estimates of unique continuation for parabolic equations and inverse initial-boundary value problems with unknown boundaries , 2001 .

[124]  Rainer Kress,et al.  An inverse boundary value problem for the heat equation: the Neumann condition , 1999 .

[125]  C. Kenig Some recent quantitative unique continuation theorems , 2006 .

[126]  L. Hörmander The analysis of linear partial differential operators , 1990 .