A power-modulated accelerating rate calorimetry for varying heat capacity measurement during thermal decomposition

[1]  Juncheng Jiang,et al.  Model-free kinetic determination of pre-exponential factor and reaction mechanism in accelerating rate calorimetry , 2021, Thermochimica Acta.

[2]  Li-ping Chen,et al.  Heat-quench-heat method in adiabatic calorimetry: determining decomposition mechanism model and kinetic evaluation with lower thermal inertia experimental data , 2021, Journal of Thermal Analysis and Calorimetry.

[3]  Li-ping Chen,et al.  Kinetic-parameters-free method of determining autocatalytic decomposition from experimental adiabatic data , 2020 .

[4]  Juncheng Jiang,et al.  Differential isoconversional kinetic approach for accelerating rate calorimetry , 2020 .

[5]  Jin-hua Sun,et al.  Assessment on thermal hazards of reactive chemicals in industry: State of the Art and perspectives , 2020 .

[6]  Juncheng Jiang,et al.  A kinetic-based approach in accelerating rate calorimetry with the varying thermal inertia consideration , 2019, Journal of Thermal Analysis and Calorimetry.

[7]  Jiong Ding,et al.  A symmetric dual-channel accelerating rate calorimeter with the varying thermal inertia consideration , 2019, Thermochimica Acta.

[8]  Ding Jiong,et al.  Measurement and calculation method of changing heat capacities during the reaction , 2019, Thermochimica Acta.

[9]  Ding Jiong,et al.  Modeling of a power compensated adiabatic reaction system for temperature control design and simulation analyses , 2017 .

[10]  Y. Duh,et al.  Chemical kinetics on thermal decompositions of di-tert-butyl peroxide studied by calorimetry , 2016, Journal of Thermal Analysis and Calorimetry.

[11]  É. Dantras,et al.  Specific heat capacity and thermal conductivity of PEEK/Ag nanoparticles composites determined by Modulated-Temperature Differential Scanning Calorimetry , 2016 .

[12]  C. Schick,et al.  Temperature modulated differential scanning calorimetry - extension to high and low frequencies , 2015 .

[13]  Francesca Passaretti,et al.  Temperature-modulated differential scanning calorimetry for the study of reversing and nonreversing heat flow of shape memory alloys , 2014, Journal of Thermal Analysis and Calorimetry.

[14]  Arata Kimura,et al.  Performance evaluation of differential accelerating rate calorimeter for the thermal runaway reaction of di-tert-butyl peroxide , 2013, Journal of Thermal Analysis and Calorimetry.

[15]  S. Lago,et al.  Thermodynamic properties of acetone calculated from accurate experimental speed of sound measurements at low temperatures and high pressures , 2009 .

[16]  I. Alig,et al.  Stochastic temperature modulation : A new technique in temperature-modulated DSC , 2006 .

[17]  M. Pikal,et al.  Using modulated DSC to investigate the origin of multiple thermal transitions in frozen 10% sucrose solutions , 2006 .

[18]  Robert L. Danley New modulated DSC measurement technique , 2003 .

[19]  M. Surianarayanan,et al.  Comprehensive Kinetic Model for Adiabatic Decomposition of Di-tert-butyl Peroxide Using BatchCAD , 2003 .

[20]  G. Höhne,et al.  The analysis of temperature modulated DSC measurements by means of the linear response theory , 1996 .

[21]  Sandra H.W. Hankin,et al.  Data acquisition and processing for the accelerating rate calorimeter , 1985 .

[22]  D. I. Townsend,et al.  Thermal hazard evaluation by an accelerating rate calorimeter , 1980 .

[23]  A. Kossoy An in-depth analysis of some methodical aspects of applying pseudo-adiabatic calorimetry , 2020 .

[24]  Yan Yu,et al.  Progress of enhancing the safety of lithium ion battery from the electrolyte aspect , 2019, Nano Energy.

[25]  L. Véchot,et al.  Is it the time to say bye to the ϕ-factor? , 2018 .

[26]  M. W. Chase,et al.  NIST-JANAF Thermochemical Tables Fourth Edition , 1998 .

[27]  H. G. Fisher,et al.  Determination of self-accelerating decomposition temperatures for self-reactive substances , 1993 .