Machine learning robot polishing cell

The quality of optical components such as lenses or mirrors can be described by shape errors and surface roughness. With increasing optic sizes, the stability of the polishing process becomes more and more important. Parameters such as chemical stability of the polishing slurry or tool wear are key elements for a deterministic computer controlled polishing (CCP) process. High sophisticated CCP processes such as magnetorheological finishing (MRF) or the zeeko bonnet polishing process rely on the stability of the relevant process parameters for the prediction of the desired material removal. The aim of this work is to monitor many process-relevant parameters by using sensors attached to the polishing head and to the polishing process. Examples are a rpm and a torque sensor mounted close to the polishing pad, a vibration sensor for the oscillation bearings, as well as a tilt sensor and a force sensor for measuring the polishing pressure. By means of a machine learning system, predictions of tool wear and the related surface quality shall be made. The aim is the detection of the critical influence factors during the polishing process and to have a predictive maintenance system for tool path planning and for tool change intervals.