Cardiac hypertrophy simulations using parametric and echocardiography-based left ventricle model with shell finite elements

[1]  N. Filipovic,et al.  COMPUTATIONAL MODEL FOR HEART TISSUE WITH DIRECT USE OF EXPERIMENTAL CONSTITUTIVE RELATIONSHIPS , 2021, Journal of the Serbian Society for Computational Mechanics.

[2]  G. Holzapfel,et al.  Compressibility and Anisotropy of the Ventricular Myocardium: Experimental Analysis and Microstructural Modeling. , 2018, Journal of biomechanical engineering.

[3]  Gerhard Sommer,et al.  Biomechanical properties and microstructure of human ventricular myocardium. , 2015, Acta biomaterialia.

[4]  E Kuhl,et al.  Computational modeling of growth: systemic and pulmonary hypertension in the heart , 2011, Biomechanics and modeling in mechanobiology.

[5]  S. Göktepe,et al.  Computational modeling of passive myocardium , 2011 .

[6]  Serdar Göktepe,et al.  A generic approach towards finite growth with examples of athlete's heart, cardiac dilation, and cardiac wall thickening , 2010 .

[7]  Serdar Göktepe,et al.  A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. , 2010, Journal of theoretical biology.

[8]  S. Göktepe,et al.  Atrial and ventricular fibrillation: computational simulation of spiral waves in cardiac tissue , 2010 .

[9]  Gerhard A Holzapfel,et al.  Constitutive modelling of passive myocardium: a structurally based framework for material characterization , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  S. Göktepe,et al.  Computational modeling of cardiac electrophysiology: A novel finite element approach , 2009 .

[11]  K. Garikipati The Kinematics of Biological Growth , 2009 .

[12]  Markus Böl,et al.  Computational modeling of muscular thin films for cardiac repair , 2009 .

[13]  Sean P Sheehy,et al.  Sarcomere alignment is regulated by myocyte shape. , 2008, Cell motility and the cytoskeleton.

[14]  K. Furie,et al.  Heart disease and stroke statistics--2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. , 2007, Circulation.

[15]  Alain Goriely,et al.  Growth and instability in elastic tissues , 2005 .

[16]  Paul Steinmann,et al.  Computational Modelling of Isotropic Multiplicative Growth , 2005 .

[17]  K. Grosh,et al.  A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics , 2003, q-bio/0312001.

[18]  I. LeGrice,et al.  Shear properties of passive ventricular myocardium. , 2002, American journal of physiology. Heart and circulatory physiology.

[19]  D. Ambrosi,et al.  On the mechanics of a growing tumor , 2002 .

[20]  J M Guccione,et al.  Mechanism underlying mechanical dysfunction in the border zone of left ventricular aneurysm: a finite element model study. , 2001, The Annals of thoracic surgery.

[21]  Marcelo Epstein,et al.  Thermomechanics of volumetric growth in uniform bodies , 2000 .

[22]  A. McCulloch,et al.  Stress-dependent finite growth in soft elastic tissues. , 1994, Journal of biomechanics.

[23]  A D McCulloch,et al.  Mechanics of active contraction in cardiac muscle: Part I--Constitutive relations for fiber stress that describe deactivation. , 1993, Journal of biomechanical engineering.

[24]  K E Muffly,et al.  Structural Remodeling of Cardiac Myocytes in Patients With Ischemic Cardiomyopathy , 1992, Circulation.

[25]  S. Göktepe,et al.  Electromechanics of the heart: a unified approach to the strongly coupled excitation–contraction problem , 2010 .

[26]  V. Alastrué,et al.  Modelling adaptative volumetric finite growth in patient-specific residually stressed arteries. , 2008, Journal of biomechanics.