Significance-Based Estimation-of-Distribution Algorithms

Estimation-of-distribution algorithms (EDAs) are randomized search heuristics that maintain a stochastic model of the solution space. This model is updated from iteration to iteration based on the quality of the solutions sampled according to the model. As previous works show, this short-term perspective can lead to erratic updates of the model, in particular, to bit-frequencies approaching a random boundary value. This can lead to significant performance losses. In order to overcome this problem, we propose a new EDA that takes into account a longer history of samples and updates its model only with respect to information which it classifies as statistically significant. We prove that this significance-based compact genetic algorithm (sig-cGA) optimizes the common benchmark functions OneMax and LeadingOnes both in O(n log n) time, a result shown for no other EDA or evolutionary algorithm so far. For the recently proposed scGA - an EDA that tries to prevent erratic model updates by imposing a bias to the uniformly distributed model - we prove that it optimizes OneMax only in a time exponential in the hypothetical population size 1/ρ.

[1]  Carsten Witt,et al.  Theory of estimation-of-distribution algorithms , 2018, GECCO.

[2]  Thomas Jansen,et al.  On the analysis of the (1+1) evolutionary algorithm , 2002, Theor. Comput. Sci..

[3]  Stefan Droste,et al.  A rigorous analysis of the compact genetic algorithm for linear functions , 2006, Natural Computing.

[4]  Michael Kolonko,et al.  Stochastic Runtime Analysis of the Cross-Entropy Algorithm , 2017, IEEE Transactions on Evolutionary Computation.

[5]  Dirk Sudholt,et al.  Update Strength in EDAs and ACO: How to Avoid Genetic Drift , 2016, GECCO.

[6]  Benjamin Doerr,et al.  A tight runtime analysis for the (μ + λ) EA , 2018, GECCO.

[7]  Benjamin Doerr,et al.  Fast genetic algorithms , 2017, GECCO.

[8]  Dirk Sudholt,et al.  Medium step sizes are harmful for the compact genetic algorithm , 2018, GECCO.

[9]  David E. Goldberg,et al.  The compact genetic algorithm , 1999, IEEE Trans. Evol. Comput..

[10]  Carsten Witt,et al.  Runtime Analysis of the ( + 1) EA on Simple Pseudo-Boolean Functions , 2006, Evolutionary Computation.

[11]  Benjamin Doerr,et al.  Ranking-Based Black-Box Complexity , 2011, Algorithmica.

[12]  Benjamin Doerr,et al.  Precise Runtime Analysis for Plateaus , 2018, PPSN.

[13]  R. Paul Wiegand,et al.  Black-box search by elimination of fitness functions , 2009, FOGA '09.

[14]  Thomas Jansen,et al.  Performance analysis of randomised search heuristics operating with a fixed budget , 2014, Theor. Comput. Sci..

[15]  Thomas Jansen,et al.  UNIVERSITY OF DORTMUND REIHE COMPUTATIONAL INTELLIGENCE COLLABORATIVE RESEARCH CENTER 531 Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods Upper and Lower Bounds for Randomized Search Heuristics in Black-Box Optimization , 2004 .

[16]  Pietro Simone Oliveto,et al.  Simplified Drift Analysis for Proving Lower Bounds in Evolutionary Computation , 2008, Algorithmica.

[17]  Carsten Witt,et al.  The Interplay of Population Size and Mutation Probability in the (1+λ) EA on OneMax , 2017, Algorithmica.

[18]  Dirk Sudholt,et al.  On the Choice of the Update Strength in Estimation-of-Distribution Algorithms and Ant Colony Optimization , 2018, Algorithmica.

[19]  Carsten Witt,et al.  Runtime Analysis of the ( μ +1) EA on Simple Pseudo-Boolean Functions , 2006 .

[20]  Frank Neumann,et al.  Design and Management of Complex Technical Processes and Systems by Means of Computational Intelligence Methods Runtime Analysis of a Simple Ant Colony Optimization Algorithm Runtime Analysis of a Simple Ant Colony Optimization Algorithm , 2022 .

[21]  Thomas Jansen,et al.  A method to derive fixed budget results from expected optimisation times , 2013, GECCO '13.

[22]  Kenneth A. De Jong,et al.  Design and Management of Complex Technical Processes and Systems by Means of Computational Intelligence Methods on the Choice of the Offspring Population Size in Evolutionary Algorithms on the Choice of the Offspring Population Size in Evolutionary Algorithms , 2004 .

[23]  Thomas Bäck,et al.  Theory of Evolutionary Computation: Recent Developments in Discrete Optimization , 2020, Theory of Evolutionary Computation.

[24]  Pietro Simone Oliveto,et al.  Erratum: Simplified Drift Analysis for Proving Lower Bounds in Evolutionary Computation , 2008, PPSN.

[25]  Benjamin Doerr,et al.  k-Bit Mutation with Self-Adjusting k Outperforms Standard Bit Mutation , 2016, PPSN.

[26]  Benjamin Doerr,et al.  Analyzing randomized search heuristics via stochastic domination , 2019, Theor. Comput. Sci..

[27]  Per Kristian Lehre,et al.  Improved runtime bounds for the univariate marginal distribution algorithm via anti-concentration , 2017, GECCO.

[28]  Benjamin Doerr,et al.  Better Runtime Guarantees via Stochastic Domination , 2018, EvoCOP.

[29]  Marvin Künnemann,et al.  Optimizing linear functions with the (1+λ) evolutionary algorithm - Different asymptotic runtimes for different instances , 2015, Theor. Comput. Sci..

[30]  Carsten Witt,et al.  Lower Bounds on the Run Time of the Univariate Marginal Distribution Algorithm on OneMax , 2017, FOGA '17.

[31]  Dirk Sudholt,et al.  Runtime analysis of the 1-ANT ant colony optimizer , 2011, Theor. Comput. Sci..

[32]  Dirk Sudholt,et al.  On the runtime analysis of the 1-ANT ACO algorithm , 2007, GECCO '07.

[33]  Dirk Sudholt,et al.  Principled Design and Runtime Analysis of Abstract Convex Evolutionary Search , 2017, Evolutionary Computation.

[34]  Per Kristian Lehre,et al.  University of Birmingham Level-based analysis of the population-based incremental learning algorithm , 2018 .

[35]  Benjamin Doerr,et al.  Probabilistic Tools for the Analysis of Randomized Optimization Heuristics , 2018, Theory of Evolutionary Computation.

[36]  Dirk Sudholt,et al.  Analysis of different MMAS ACO algorithms on unimodal functions and plateaus , 2009, Swarm Intelligence.

[37]  Benjamin Doerr,et al.  Edge-based representation beats vertex-based representation in shortest path problems , 2010, GECCO '10.

[38]  Andrew M. Sutton,et al.  The Compact Genetic Algorithm is Efficient Under Extreme Gaussian Noise , 2017, IEEE Transactions on Evolutionary Computation.

[39]  Per Kristian Lehre,et al.  Unbiased Black-Box Complexity of Parallel Search , 2014, PPSN.

[40]  Duc-Cuong Dang,et al.  Simplified Runtime Analysis of Estimation of Distribution Algorithms , 2015, GECCO.

[41]  Benjamin Doerr,et al.  The (1+λ) evolutionary algorithm with self-adjusting mutation rate , 2017, GECCO.

[42]  Petr Posík Estimation of Distribution Algorithms , 2006 .

[43]  Benjamin Doerr,et al.  Significance-Based Estimation-of-Distribution Algorithms , 2020, IEEE Transactions on Evolutionary Computation.

[44]  Benjamin Doerr,et al.  A Tight Runtime Analysis of the (1+(λ, λ)) Genetic Algorithm on OneMax , 2015, GECCO.

[45]  Tobias Friedrich,et al.  EDAs cannot be Balanced and Stable , 2016, GECCO.

[46]  Carsten Witt,et al.  The Interplay of Population Size and Mutation Probability in the ($$1+\lambda $$1+λ) EA on OneMax , 2016, Algorithmica.

[47]  Carsten Witt,et al.  Upper Bounds on the Running Time of the Univariate Marginal Distribution Algorithm on OneMax , 2018, Algorithmica.

[48]  Duc-Cuong Dang,et al.  Level-Based Analysis of the Univariate Marginal Distribution Algorithm , 2018, Algorithmica.

[49]  Kurt Mehlhorn,et al.  The Query Complexity of Finding a Hidden Permutation , 2013, Space-Efficient Data Structures, Streams, and Algorithms.

[50]  Benjamin Doerr,et al.  Runtime Analysis for Self-adaptive Mutation Rates , 2018, Algorithmica.

[51]  Pietro Simone Oliveto,et al.  On the runtime analysis of selection hyper-heuristics with adaptive learning periods , 2018, GECCO.