Femtosecond laser-assisted fabrication of microstrip patch antenna

Abstract. We demonstrate a technique for fabricating microstrip patch antennas using femtosecond laser patterning followed by ultraviolet beam and chemical treatment. Initially, we design the physical parameters of both single-slot and double-slot microstrip patch antennas and simulate them using high-frequency structure simulator for optimization. Simulation results exhibit a return loss of −26  dB at the resonant frequency of 22.9 gigahertz (GHz) for single-slot microstrip patch antenna and −18.3  dB at 24.03 GHz for double-slot microstrip patch antenna. The three-dimensional polar plot and far-field radiation pattern of the microstrip patch antennas confirm excellent directivity of the antennas. Furthermore, we investigate the return loss of the fabricated microstrip patch antennas. For single-slot microstrip patch antenna, experimental result shows a return loss of −21.25  dB at 22.7 GHz. In contrast, double-slot microstrip patch antenna shows a return loss of −27  dB at 24.1 GHz. In addition, we compare the performance of the double-slot microstrip patch antenna fabricated using femtosecond laser-assisted technique and photolithographic technique and find better performance in the femtosecond laser-fabricated microstrip antenna. The proposed femtosecond laser-based technique is simple and shows promises in precise fabrication of high-quality microstrip antennas.

[1]  Indrasen Singh,et al.  Micro strip Patch Antenna and its Applications : a Survey , 2011 .

[2]  S. Long,et al.  Resonant frequency of a circular disc, printed-circuit antenna , 1977 .

[3]  Glenn D. Boreman,et al.  Fabrication of infrared antennas using electron-beam lithography , 2003, SPIE MOEMS-MEMS.

[4]  H. Hertz Die Kräfte electrischer Schwingungen, behandelt nach der Maxwell'schen Theorie , 1889 .

[5]  C. Christodoulou,et al.  Pattern Estimation of a Microstrip Antenna Integrated With a Quantum-Dot Mode-Locked Laser , 2010, IEEE Antennas and Wireless Propagation Letters.

[6]  D. Grobnic,et al.  Bragg grating evanescent field sensor made in biconical tapered fiber with femtosecond IR radiation , 2006, IEEE Photonics Technology Letters.

[7]  Man-Seop Lee,et al.  Colorizing mechanism of brass surface by femtosecond laser induced microstructures , 2013 .

[8]  D. Schaubert,et al.  Analysis of inifinite phased arrays of printed dipoles , 1984 .

[9]  Shyam S. Pattnaik,et al.  Metamaterial embedded wearable rectangular microstrip patch antenna , 2012 .

[10]  J. Faist,et al.  2D patch antenna array on a double metal quantum cascade laser with >90% coupling to a Gaussian beam and selectable facet transparency at 1.9  THz. , 2016, Optics letters.

[11]  Yahiea Al-Naiemy,et al.  A systematic approach for the design, fabrication, and testing of microstrip antennas using inkjet printing technology , 2012 .

[12]  Md. Shamim Ahsan,et al.  Formation mechanism of self-organized nanogratings on a titanium surface using femtosecond laser pulses , 2012 .

[14]  Naveen Jaglan,et al.  Surface waves minimisation in microstrip patch antenna using EBG substrate , 2015, 2015 International Conference on Signal Processing and Communication (ICSC).

[15]  Sreeja Balakrishnapillai Suseela,et al.  Laser Patterning of Thin Film Copper and ITO on Flexible Substrates for Terahertz Antenna Applications , 2017 .

[16]  Chun-Gon Kim,et al.  Design and fabrication of a microstrip patch antenna with a low radar cross section in the X-band , 2011 .

[17]  Ik-Bu Sohn,et al.  Fabrication of Fresnel zone plate lens in fused silica glass using femtosecond laser lithography technology , 2014 .

[18]  Ik-Bu Sohn,et al.  Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique , 2015 .

[19]  J. Vardaxoglou,et al.  Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas , 2005, IEEE Transactions on Antennas and Propagation.

[20]  Manos M. Tentzeris,et al.  Fabrication of microstrip patch antenna using novel hybrid printing technology , 2016 .

[21]  Mohammad A. Matin,et al.  A design rule for inset-fed rectangular microstrip patch antenna , 2010 .

[22]  P. Mallikarjuna Rao,et al.  Design and Performance Analysis of Microstrip Antenna using different Ground Plane Techniques for WLAN Application , 2016 .

[23]  Md. Shamim Ahsan,et al.  Laser assisted fabrication of micro-lens array and characterization of their beam shaping property , 2019, Applied Surface Science.

[24]  M. Dumitru,et al.  Femtosecond Laser Fabrication of Metamaterials for High Frequency Microwave Devices , 2008 .

[25]  A. Derneryd Linearly polarized microstrip antennas , 1976 .

[26]  Nam Kim,et al.  A compact size 2.9‐23.5 GHz microstrip patch antenna with WLAN band‐rejection , 2019, Microwave and Optical Technology Letters.

[27]  Haider R. Khaleel,et al.  Design, Fabrication, and Testing of Flexible Antennas , 2013 .

[28]  Md. Shamim Ahsan,et al.  Synchronized femtosecond laser pulse switching system based nano-patterning technology , 2017 .

[29]  Shanu Sharma,et al.  Design and Simulation of Microstrip Patch Antenna Using Different Substrates , 2014 .

[30]  Alan Purvis,et al.  Fabrication of a 3D electrically small antenna using holographic photolithography , 2013 .

[31]  Md. Shamim Ahsan,et al.  Three-dimensional hologram printing by single beam femtosecond laser direct writing , 2018 .

[32]  Lan Yao,et al.  Design and fabrication of microstrip antennas integrated in three dimensional orthogonal woven composites , 2009 .