Optimal and suboptimal results in full- and reduced-order linear filtering

This short paper considers the design of linear reduced-order filters and linear full-order filters with reduced complexity. The objective of a reduced-order filter is to estimate a linear transformation of the state vector with a filter of lower dimension. This type of filter occurs frequently in applications.

[1]  Craig S. Sims,et al.  An algorithm for estimating a portion of the state vector , 1974 .

[2]  Robert Asher,et al.  Performance Evaluation of Suboptimal Filters , 1975, IEEE Transactions on Aerospace and Electronic Systems.

[3]  Robert B. Asher,et al.  Bias, variance, and estimation error in reduced order filters , 1976, Autom..

[4]  E. Tse,et al.  A direct derivation of the optimal linear filter using the maximum principle , 1967, IEEE Transactions on Automatic Control.

[5]  Robert Asher,et al.  Filtering for precision pointing and tracking with application for aircraft to satellite tracking , 1975, 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes.

[6]  C. Hutchinson,et al.  Minimum variance reduced state filters , 1972, IEEE Conference on Decision and Control.

[7]  Cornelius T. Leondes,et al.  1972 IFAC congress paper: Optimal minimal-order observers for discrete-time systems-A unified theory , 1972 .

[8]  M. Aoki,et al.  Estimation of the state vector of a linear stochastic system with a constrained estimator , 1967, IEEE Transactions on Automatic Control.

[9]  Michael Athans,et al.  The Matrix Minimum Principle , 1967, Inf. Control..

[10]  C. T. Leondes,et al.  1972 IFAC congress paperOptimal minimal-order observers for discrete-time systems—A unified theoryObservateurs d'ordre minimal optimal pour des systèmes à temps discrets—Une théorie unifiéeOptimale beobachter minimaler ordnung für diskretzeit-systemOптимaльныe нaблюдaтeли нaймeньшeгo пopядкa для cнc , 1972 .