Optimal and suboptimal results in full- and reduced-order linear filtering
暂无分享,去创建一个
Craig S. Sims | R. Asher | R. Asher | C. Sims
[1] Craig S. Sims,et al. An algorithm for estimating a portion of the state vector , 1974 .
[2] Robert Asher,et al. Performance Evaluation of Suboptimal Filters , 1975, IEEE Transactions on Aerospace and Electronic Systems.
[3] Robert B. Asher,et al. Bias, variance, and estimation error in reduced order filters , 1976, Autom..
[4] E. Tse,et al. A direct derivation of the optimal linear filter using the maximum principle , 1967, IEEE Transactions on Automatic Control.
[5] Robert Asher,et al. Filtering for precision pointing and tracking with application for aircraft to satellite tracking , 1975, 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes.
[6] C. Hutchinson,et al. Minimum variance reduced state filters , 1972, IEEE Conference on Decision and Control.
[7] Cornelius T. Leondes,et al. 1972 IFAC congress paper: Optimal minimal-order observers for discrete-time systems-A unified theory , 1972 .
[8] M. Aoki,et al. Estimation of the state vector of a linear stochastic system with a constrained estimator , 1967, IEEE Transactions on Automatic Control.
[9] Michael Athans,et al. The Matrix Minimum Principle , 1967, Inf. Control..
[10] C. T. Leondes,et al. 1972 IFAC congress paperOptimal minimal-order observers for discrete-time systems—A unified theoryObservateurs d'ordre minimal optimal pour des systèmes à temps discrets—Une théorie unifiéeOptimale beobachter minimaler ordnung für diskretzeit-systemOптимaльныe нaблюдaтeли нaймeньшeгo пopядкa для cнc , 1972 .