Grade of Service Steiner Minimum Trees in the Euclidean Plane
暂无分享,去创建一个
Ding-Zhu Du | Guohui Lin | Guoliang Xue | G. Xue | D. Du | Guohui Lin | D. Du
[1] Frank K. Hwang,et al. The Shortest Network under a Given Topology , 1992, J. Algorithms.
[2] Z. A. Melzak. On the Problem of Steiner , 1961, Canadian Mathematical Bulletin.
[3] Knud D. Andersen. An Efficient Newton Barrier Method for Minimizing a Sum of Euclidean Norms , 1993, SIAM J. Optim..
[4] Paul H. Calamai,et al. A projected newton method forlp norm location problems , 1987, Math. Program..
[5] Michael L. Overton,et al. A quadratically convergent method for minimizing a sum of euclidean norms , 1983, Math. Program..
[6] A. Volgenant,et al. Reducing the hierarchical network design problem , 1989 .
[7] James MacGregor Smith,et al. Euclidean Steiner Minimal Trees, Minimum Energy Configurations, and the Embedding Problem of Weighted Graphs in E3 , 1996, Discret. Appl. Math..
[8] David S. Johnson,et al. The Complexity of Computing Steiner Minimal Trees , 1977 .
[9] A. Volgenant,et al. An addendum to the hierarchical network design problem , 1996 .
[10] Marshall W. Bern,et al. The Steiner Problem with Edge Lengths 1 and 2 , 1989, Inf. Process. Lett..
[11] Michael L. Overton,et al. An Efficient Primal-Dual Interior-Point Method for Minimizing a Sum of Euclidean Norms , 2000, SIAM J. Sci. Comput..
[12] Cees Duin,et al. The multi-weighted Steiner tree problem , 1991, Ann. Oper. Res..
[13] Michael J. Todd,et al. Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..
[14] Martin Zachariasen,et al. Euclidean Steiner minimum trees: An improved exact algorithm , 1997 .
[15] Prakash Mirchandani,et al. The Multi-Tier Tree Problem , 1996, INFORMS J. Comput..
[16] Ding-Zhu Du,et al. An approach for proving lower bounds: solution of Gilbert-Pollak's conjecture on Steiner ratio , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.
[17] Pawel Winter,et al. An algorithm for the steiner problem in the euclidean plane , 1985, Networks.
[18] Sanjeev Arora,et al. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.
[19] Martin Zachariasen,et al. Exact solutions to large-scale plane Steiner tree problems , 1999, SODA '99.
[20] F. K. Hwang,et al. A primer of the Euclidean Steiner problem , 1991, Ann. Oper. Res..
[21] Yinyu Ye,et al. An Efficient Algorithm for Minimizing a Sum of Euclidean Norms with Applications , 1997, SIAM J. Optim..
[22] Thomas L. Magnanti,et al. Heuristics, LPs, and Trees on Trees: Network Design Analyses , 1996, Oper. Res..
[23] H. Pollak,et al. Steiner Minimal Trees , 1968 .
[24] A. Conn,et al. A Stable Algorithm for Solving the Multifacility Location Problem Involving Euclidean Distances , 1980 .
[25] Ellis Horowitz,et al. Fundamentals of Computer Algorithms , 1978 .
[26] J. Current,et al. The hierarchical network design problem , 1986 .
[27] T. Magnanti,et al. Modeling and heuristic worst-case performance analysis of the two-level network design problem , 1994 .
[28] F. Hwang,et al. A linear time algorithm for full steiner trees , 1986 .
[29] Charles J. Colbourn,et al. Grade of Service Steiner Trees in Series-Parallel Networks , 2000 .
[30] Chak-Kuen Wong,et al. Floating Steiner Trees , 1998, IEEE Trans. Computers.
[31] Denton E. Hewgill,et al. Exact Computation of Steiner Minimal Trees in the Plane , 1986, Inf. Process. Lett..
[32] Michael L. Overton,et al. Two Heuristics for the Steiner Tree , 1996 .
[33] Ding-Zhu Du,et al. An O(n log n) Average Time Algorithm for Computing the Shortest Network under a Given Topology , 1999, Algorithmica.
[34] Guoliang Xue,et al. Computing the Minimum Cost Pipe Network Interconnecting One Sink and Many Sources , 1999, SIAM J. Optim..
[35] G. E. Cantarella. HEURISTICS FOR THE NETWORK DESIGN PROBLEM , 2003 .