New variational principles for locating periodic orbits of differential equations

We present new methods for the determination of periodic orbits of general dynamical systems. Iterative algorithms for finding solutions by these methods, for both the exact continuum case, and for approximate discrete representations suitable for numerical implementation, are discussed. Finally, we describe our approach to the computation of unstable periodic orbits of the driven Navier–Stokes equations, simulated using the lattice Boltzmann equation.

[1]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .

[2]  Peter V. Coveney,et al.  Real science at the petascale , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  R. Benzi,et al.  Lattice Gas Dynamics with Enhanced Collisions , 1989 .

[4]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[5]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[6]  Peter V Coveney,et al.  Unstable periodic orbits in the Lorenz attractor , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  Grebogi,et al.  Unstable periodic orbits and the dimensions of multifractal chaotic attractors. , 1988, Physical review. A, General physics.

[8]  S J Schiff,et al.  Periodic orbits: a new language for neuronal dynamics. , 1998, Biophysical journal.

[9]  Peter V. Coveney,et al.  Unstable periodic orbits in weak turbulence , 2010, J. Comput. Sci..

[10]  D. Viswanath Recurrent motions within plane Couette turbulence , 2006, Journal of Fluid Mechanics.

[11]  Yueheng Lan,et al.  Variational method for finding periodic orbits in a general flow. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Jean-Pierre Eckmann,et al.  Addendum: Ergodic theory of chaos and strange attractors , 1985 .

[13]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[14]  Auerbach,et al.  Exploring chaotic motion through periodic orbits. , 1987, Physical review letters.

[15]  J. Gibson,et al.  Visualizing the geometry of state space in plane Couette flow , 2007, Journal of Fluid Mechanics.

[16]  Genta Kawahara,et al.  Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst , 2001, Journal of Fluid Mechanics.