Fiber optic delay line memory.

A model for digital synchronous delay line memory (DSDLM) is given, yielding limitations on the maximum number of bits that can be reliably stored for a given change in delay medium temperature and amount of medium dispersion. More than 22 million bits can be stored when single-mode optical fiber is used as the medium, but only if operated at the wavelength of minimum dispersion and by limiting thermal fluctuations to within 0.002 degrees C. A DSDLM is being constructed using such fiber, along with lithium niobate directional couplers as the switching elements. Signal regeneration errors, switch crosstalk, and polarization losses are negligible for the implementation. With a modulation frequency of 100 MHz, a single-line 2000-bit memory can be reliably operated without thermal compensation given a temperature fluctuation of <80 degrees C.

[1]  I.L. Auerbach,et al.  Mercury Delay Line Memory Using a Pulse Rate of Several Megacycles , 1949, Proceedings of the IRE.

[2]  I. Malitson Interspecimen Comparison of the Refractive Index of Fused Silica , 1965 .

[3]  R. Smith Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering. , 1972, Applied optics.

[4]  M. Horiguchi,et al.  Spectral losses of low-OH-content optical fibres , 1976 .

[5]  L. G. Cohen,et al.  Effect of temperature on transmission in lightguides , 1979, The Bell System Technical Journal.

[6]  A Sugimura,et al.  Wavelength dispersion of optical fibers directly measured by ''difference method'' in the 0.8-1.6 microm range. , 1979, The Review of scientific instruments.

[7]  David N. Payne,et al.  Variation of pulse delay with stress and temperature in jacketed and unjacketed optical fibres , 1979 .

[8]  M. Tateda,et al.  Thermal characteristics of phase shift in jacketed optical fibers. , 1980, Applied optics.

[9]  J Jarzynski,et al.  Temperature-induced optical phase shifts in fibers. , 1981, Applied optics.

[10]  Ivan P. Kaminow,et al.  Polarization in optical fibers , 1981 .

[11]  Joseph A. Bucaro,et al.  Minimizing temperature sensitivity of optical fibers. , 1981, Applied optics.

[12]  N. Doran,et al.  Nonlinear limits on bandwidth at the minimum dispersion in optical fibres , 1983 .

[13]  N. Shibata,et al.  Thermal characteristics of optical pulse transit time delay and fiber strain in a single-mode optical fiber cable. , 1983, Applied optics.

[14]  J. Goodman,et al.  Optical fiber delay line signal processing , 1984 .

[15]  Miroslaw Malek,et al.  Fault-Tolerant Semiconductor Memories , 1984, Computer.

[16]  J E Bowers,et al.  In-line single-mode fiber polarization controllers at 1.55, 1.30, and 0.63 Mum. , 1985, Applied optics.

[17]  M. I. Belovolov,et al.  Dynamic direct-access memory utilizing fiber waveguides , 1985 .

[18]  Donald B. Keck,et al.  Fundamentals of optical waveguide fibers , 1985, IEEE Communications Magazine.

[19]  F. Leonberger,et al.  Depolarisation in Ti:LiNbO3 waveguides and its effect on circuit design , 1987 .

[20]  R. A. Soref,et al.  1.3 μm electro‐optic silicon switch , 1987 .

[21]  R. D. Standley,et al.  2 Gbit/s timing recovery circuit using dielectric resonator filter , 1987 .

[22]  T. Hosaka,et al.  Measurement of chromatic dispersions in Ti-diffused LiNbO(3) optical waveguides. , 1988, Optics letters.

[23]  S. Das,et al.  Modal noise due to short-wavelength (780-900-nm) transmission in single-mode fibers optimized for 1300 nm. , 1988, Applied optics.

[24]  Ikuo Mito,et al.  Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems , 1988 .

[25]  J Albert,et al.  Insertion loss reduction between single-mode fibers and diffused channel waveguides. , 1988, Applied optics.

[26]  L. Buhl,et al.  Crosstalk measurements of integrated high-speed Ti:LiNbO/sub 3/ Delta beta -reversal switching circuits , 1989 .

[27]  J. E. Watson,et al.  Calculated wavelength sensitivity of lithium niobate switches , 1989 .

[28]  D. Broer,et al.  Doubly coated optical fibres with a low sensitivity to temperature and microbending , 1989 .

[29]  P. Sansonetti,et al.  Design of semiconductor electrooptic directional coupler with the beam propagation method , 1989 .