Optimal Time-Bounded Reachability Analysis for Concurrent Systems

Efficient optimal scheduling for concurrent systems on a finite horizon is a challenging task up to date: Not only does time have a continuous domain, but in addition there are exponentially many possible decisions to choose from at every time point.

[1]  Rupak Majumdar,et al.  Approximate Time Bounded Reachability for CTMCs and CTMDPs: A Lyapunov Approach , 2018, QEST.

[2]  Gianfranco Balbo,et al.  Introduction to Generalized Stochastic Petri Nets , 2007, SFM.

[3]  Martin R. Neuhäußer,et al.  Model checking nondeterministic and randomly timed systems , 2010 .

[4]  Sven Schewe,et al.  Optimal time-abstract schedulers for CTMDPs and continuous-time Markov games , 2013, Theor. Comput. Sci..

[5]  Marco Ajmone Marsan,et al.  Modelling with Generalized Stochastic Petri Nets , 1995, PERV.

[6]  Joost-Pieter Katoen,et al.  Quantitative Timed Analysis of Interactive Markov Chains , 2012, NASA Formal Methods.

[7]  Holger Hermanns,et al.  Improving time bounded reachability computations in interactive Markov chains , 2015, Sci. Comput. Program..

[8]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[9]  Joost-Pieter Katoen,et al.  Sound Value Iteration , 2018, CAV.

[10]  Holger Hermanns,et al.  The Modest Toolset: An Integrated Environment for Quantitative Modelling and Verification , 2014, TACAS.

[11]  Sebastian Junges,et al.  A Storm is Coming: A Modern Probabilistic Model Checker , 2017, CAV.

[12]  Peter Buchholz,et al.  Numerical analysis of continuous time Markov decision processes over finite horizons , 2011, Comput. Oper. Res..

[13]  Holger Hermanns,et al.  Model Checking Algorithms for Markov Automata , 2012, Electron. Commun. Eur. Assoc. Softw. Sci. Technol..

[14]  Joost-Pieter Katoen,et al.  Modelling, Reduction and Analysis of Markov Automata (extended version) , 2013, QEST.

[15]  B. L. Miller Finite State Continuous Time Markov Decision Processes with a Finite Planning Horizon , 1968 .

[16]  Mariëlle Stoelinga,et al.  A Rigorous, Compositional, and Extensible Framework for Dynamic Fault Tree Analysis , 2010, IEEE Transactions on Dependable and Secure Computing.

[17]  Lijun Zhang,et al.  Efficient approximation of optimal control for continuous-time Markov games , 2016, Inf. Comput..

[18]  Massoud Pedram,et al.  Stochastic modeling of a power-managed system: construction and optimization , 1999, ISLPED '99.

[19]  Holger Hermanns,et al.  Optimal Continuous Time Markov Decisions , 2015, ATVA.

[20]  Benjamin Monmege,et al.  Reachability in MDPs: Refining Convergence of Value Iteration , 2014, RP.

[21]  A. Jensen,et al.  Markoff chains as an aid in the study of Markoff processes , 1953 .

[22]  Michael K. Molloy Performance Analysis Using Stochastic Petri Nets , 1982, IEEE Transactions on Computers.

[23]  Lijun Zhang,et al.  A Semantics for Every GSPN , 2013, Petri Nets.

[24]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[25]  Holger Hermanns,et al.  Interactive Markov Chains , 2002, Lecture Notes in Computer Science.

[26]  Christel Baier,et al.  Ensuring the Reliability of Your Model Checker: Interval Iteration for Markov Decision Processes , 2017, CAV.

[27]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[28]  William H. Sanders,et al.  Stochastic Activity Networks: Structure, Behavior, and Application , 1985, PNPM.

[29]  Hassan Hatefi Ardakani Finite horizon analysis of Markov automata , 2016 .

[30]  Joost-Pieter Katoen,et al.  Analysis of Timed and Long-Run Objectives for Markov Automata , 2014, Log. Methods Comput. Sci..

[31]  Marco Ajmone Marsan,et al.  A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems , 1984, TOCS.