Sizing and topology optimization of truss structures using genetic programming

Abstract This paper presents a genetic programming approach for simultaneous optimization of sizing and topology of truss structures. It aims to find the optimal cross-sectional areas and connectivities of the joints to achieve minimum weight in the search space. The structural optimization problem is subjected to kinematic stability, maximum allowable stress and deflection. This approach uses the variable-length representation of potential solutions in the shape of computer programs and evolves to the optimum solution. This method has the capability to identify redundant truss elements and joints in the design space. The obtained results are compared with existing popular and competent techniques in literature and its competence as a tool in the optimization problem are demonstrated in solving some benchmark examples, the proposed approach provided lighter truss structures than the available solutions reported in the literature.

[1]  Mehdi Sargolzaei,et al.  Swallow swarm optimization algorithm: a new method to optimization , 2012, Neural Computing and Applications.

[2]  Yaowen Yang,et al.  Automated optimum design of structures using genetic programming , 2002 .

[3]  Garret N. Vanderplaats,et al.  Automated Design of Trusses for Optimum Geometry , 1972 .

[4]  Zhiqiang Zheng,et al.  Height and attitude active disturbance rejection controller design of a small-scale helicopter , 2014, Science China Information Sciences.

[5]  Xiaodong Li,et al.  Cooperative Co-Evolution With Differential Grouping for Large Scale Optimization , 2014, IEEE Transactions on Evolutionary Computation.

[6]  Feng Liu,et al.  A heuristic particle swarm optimization method for truss structures with discrete variables , 2009 .

[7]  Edward J. Haug,et al.  Introduction to optimal design , 1989 .

[8]  Tomasz Arciszewski,et al.  Evolutionary computation and structural design: A survey of the state-of-the-art , 2005 .

[9]  Guan-Chun Luh,et al.  Optimal design of truss-structures using particle swarm optimization , 2011 .

[10]  Ali Jamali,et al.  Uncertainty quantification and robust modeling of selective laser melting process using stochastic multi-objective approach , 2016 .

[11]  Jiaping Yang,et al.  Discussion of “Genetic Algorithms‐Based Methodologies for Design Optimization of Trusses” by Jiaping Yang and Chee‐Kiong Soh , 1998 .

[12]  Xiaodong Li,et al.  Designing benchmark problems for large-scale continuous optimization , 2015, Inf. Sci..

[13]  Solomon Tesfamariam,et al.  A survey of non-gradient optimization methods in structural engineering , 2013, Adv. Eng. Softw..

[14]  Michael O'Neill,et al.  Automatic innovative truss design using grammatical evolution , 2014 .

[15]  K. Deb,et al.  Design of truss-structures for minimum weight using genetic algorithms , 2001 .

[16]  P. Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[17]  Jian Jiang,et al.  Using OpenSees for structures in fire , 2012 .

[18]  Ali Jamali,et al.  Multi-objective genetic programming approach for robust modeling of complex manufacturing processes having probabilistic uncertainty in experimental data , 2017, J. Intell. Manuf..

[19]  Guan-Chun Luh,et al.  Optimal design of truss structures using ant algorithm , 2008 .

[20]  Q. H. Wu,et al.  A heuristic particle swarm optimizer for optimization of pin connected structures , 2007 .

[21]  L. A. Schmit,et al.  A new structural analysis/synthesis capability - ACCESS , 1975 .

[22]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[23]  Marco Dorigo,et al.  Distributed Optimization by Ant Colonies , 1992 .

[24]  Chee Kiong Soh,et al.  Fuzzy Logic Integrated Genetic Programming for Optimization and Design , 2000 .

[25]  Min-Yuan Cheng,et al.  A Hybrid Harmony Search algorithm for discrete sizing optimization of truss structure , 2016 .

[26]  Yang Yu,et al.  Variable solution structure can be helpful in evolutionary optimization , 2015, Science China Information Sciences.

[27]  O. Hasançebi,et al.  An elitist self-adaptive step-size search for structural design optimization , 2014, Appl. Soft Comput..

[28]  B. H. V. Topping,et al.  Shape Optimization of Skeletal Structures: A Review , 1983 .

[29]  Paulo Rizzi,et al.  Optimization of multi-constrained structures based on optimality criteria , 1976 .

[30]  Jiaping Yang,et al.  Structural Optimization by Genetic Algorithms with Tournament Selection , 1997 .

[31]  M. Panagiotou,et al.  Three-Dimensional Cyclic Beam-Truss Model for Nonplanar Reinforced Concrete Walls , 2014 .

[32]  Ibrahim Eksin,et al.  A new optimization method: Big Bang-Big Crunch , 2006, Adv. Eng. Softw..

[33]  Osvaldo M. Querin,et al.  Geometry and sizing optimisation of discrete structure using the genetic programming method , 2006 .

[34]  R. Venkata Rao,et al.  Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems , 2011, Comput. Aided Des..

[35]  Charles V. Camp DESIGN OF SPACE TRUSSES USING BIG BANG–BIG CRUNCH OPTIMIZATION , 2007 .

[36]  Ali Kaveh,et al.  Topology optimization of trusses using genetic algorithm, force method and graph theory , 2003 .

[37]  Chun-Yin Wu,et al.  Truss structure optimization using adaptive multi-population differential evolution , 2010 .

[38]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[39]  Yaochu Jin,et al.  A Competitive Swarm Optimizer for Large Scale Optimization , 2015, IEEE Transactions on Cybernetics.

[40]  Prabhat Hajela,et al.  Genetic Algorithms in Structural Topology Optimization , 1993 .

[41]  Chee Kiong Soh,et al.  Genetic programming-based approach for structural optimization , 2000 .

[42]  Harvey J. Greenberg,et al.  Automatic design of optimal structures , 1964 .

[43]  Hojjat Adeli,et al.  Distributed Genetic Algorithm for Structural Optimization , 1995 .

[44]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[45]  Charles V. Camp,et al.  Design of space trusses using modified teaching–learning based optimization , 2014 .

[46]  Michael Fenton,et al.  Discrete Planar Truss Optimization by Node Position Variation Using Grammatical Evolution , 2016, IEEE Transactions on Evolutionary Computation.

[47]  T. Bakhshpoori,et al.  An efficient hybrid Particle Swarm and Swallow Swarm Optimization algorithm , 2014 .

[48]  Ali Kaveh,et al.  A new metaheuristic for continuous structural optimization: water evaporation optimization , 2016 .

[49]  Ali Jamali,et al.  Automated synthesis of optimal controller using multi-objective genetic programming for two-mass-spring system , 2014, 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM).

[50]  Vedat Toğan,et al.  Simultaneous size, shape, and topology optimization of truss structures using integrated particle swarm optimizer , 2016 .

[51]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[52]  K. V. Price,et al.  Differential evolution: a fast and simple numerical optimizer , 1996, Proceedings of North American Fuzzy Information Processing.

[53]  L. Berke,et al.  Structural optimization using optimality criteria methods , 1984 .