Photometric redshifts for the Kilo-Degree Survey

We present a machine-learning photometric redshift (ML photo-z) analysis of the Kilo-Degree Survey Data Release 3 (KiDS DR3), using two neural-network based techniques: ANNz2 and MLPQNA. Despite limited coverage of spectroscopic training sets, these ML codes provide photo-zs of quality comparable to, if not better than, those from the Bayesian Photometric Redshift (BPZ) code, at least up to zphot ≲ 0.9 and r ≲ 23.5. At the bright end of r ≲ 20, where very complete spectroscopic data overlapping with KiDS are available, the performance of the ML photo-zs clearly surpasses that of BPZ, currently the primary photo-z method for KiDS. Using the Galaxy And Mass Assembly (GAMA) spectroscopic survey as calibration, we furthermore study how photo-zs improve for bright sources when photometric parameters additional to magnitudes are included in the photo-z derivation, as well as when VIKING and WISE infrared (IR) bands are added. While the fiducial four-band ugri setup gives a photo-z bias 〈δz/(1 + z)〉 = −2 × 10−4 and scatter σδz/(1+z) < 0.022 at mean 〈z〉 = 0.23, combining magnitudes, colours, and galaxy sizes reduces the scatter by ~7% and the bias by an order of magnitude. Once the ugri and IR magnitudes are joined into 12-band photometry spanning up to 12 μm, the scatter decreases by more than 10% over the fiducial case. Finally, using the 12 bands together with optical colours and linear sizes gives 〈δz/(1 + z)〉 < 4 × 10−5 and σδz/(1+z) < 0.019. This paper also serves as a reference for two public photo-z catalogues accompanying KiDS DR3, both obtained using the ANNz2 code. The first one, of general purpose, includes all the 39 million KiDS sources with four-band ugri measurements in DR3. The second dataset, optimised for low-redshift studies such as galaxy-galaxy lensing, is limited to r ≲ 20, and provides photo-zs of much better quality than in the full-depth case thanks to incorporating optical magnitudes, colours, and sizes in the GAMA-calibrated photo-z derivation.

[1]  Michigan.,et al.  Estimating photometric redshifts with artificial neural networks , 2002, astro-ph/0203250.

[2]  F. Tegenfeldt,et al.  TMVA - Toolkit for multivariate data analysis , 2012 .

[3]  D. Gerdes,et al.  Weak lensing by galaxy troughs in DES Science Verification data , 2015, 1507.05090.

[4]  Karl Glazebrook,et al.  The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.

[5]  Ruth H. Pater,et al.  Nuclear Instruments and Methods in Physics Research. Section B; Microstructural Characterization of Semi-Interpenetrating Polymer Networks by Positron Lifetime Spectroscopy , 1998 .

[6]  B. Carry,et al.  Mining the Kilo-Degree Survey for solar system objects , 2017, 1711.02780.

[7]  R. Nichol,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS) - an unprecedented view of galaxies and large-scale structure at 0.5 < z < 1.2 , 2013, 1303.2623.

[8]  Jiangang Hao,et al.  ArborZ: PHOTOMETRIC REDSHIFTS USING BOOSTED DECISION TREES , 2009, The Astrophysical Journal.

[9]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[10]  A. Hopkins,et al.  GALAXY AND MASS ASSEMBLY (GAMA): MID-INFRARED PROPERTIES AND EMPIRICAL RELATIONS FROM WISE , 2014, 1401.0837.

[11]  C. Heymans,et al.  The 2-degree Field Lensing Survey: photometric redshifts from a large new training sample to r < 19.5 , 2016, 1612.00839.

[12]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release , 2010, 1009.0614.

[13]  Adam O. Kalinich,et al.  MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS , 2015, 1509.03318.

[14]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[15]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[16]  J. A. Vázquez-Mata,et al.  Galaxy and mass assembly (GAMA): End of survey report and data release 2 , 2015, 1506.08222.

[17]  R. Nichol,et al.  Photometric redshift analysis in the Dark Energy Survey Science Verification data , 2014, 1406.4407.

[18]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[19]  S. Driver,et al.  Galaxy And Mass Assembly (GAMA): Curation and reanalysis of 16.6k redshifts in the G10/COSMOS region , 2014, 1409.3574.

[20]  M. Way GALAXY ZOO MORPHOLOGY AND PHOTOMETRIC REDSHIFTS IN THE SLOAN DIGITAL SKY SURVEY , 2011, 1104.3758.

[21]  R. McMahon,et al.  First discoveries of z ̃ 6 quasars with the Kilo-Degree Survey and VISTA Kilo-Degree Infrared Galaxy survey , 2015, 1507.00726.

[22]  GaaP: PSF- and aperture-matched photometry using shapelets , 2006, astro-ph/0610606.

[23]  C. Heymans,et al.  2dFLenS and KiDS: determining source redshift distributions with cross-correlations , 2016, 1611.07578.

[24]  Massimo Brescia,et al.  Photometric redshifts with Quasi Newton Algorithm (MLPQNA). Results in the PHAT1 contest , 2012, 1206.0876.

[25]  Massimo Brescia,et al.  METAPHOR: a machine-learning-based method for the probability density estimation of photometric redshifts , 2016, 1611.02162.

[26]  Karl Glazebrook,et al.  KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering , 2017, 1707.06627.

[27]  Edwin A. Valentijn,et al.  The Kilo-Degree Survey , 2012, Experimental Astronomy.

[28]  Massimo Brescia,et al.  Machine Learning based photometric redshifts for the KiDS ESO DR2 galaxies , 2015 .

[29]  Michael J. Kurtz,et al.  μ-PhotoZ: Photometric Redshifts by Inverting the Tolman Surface Brightness Test , 2007, 0707.0484.

[30]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[31]  Y. Wadadekar Estimating Photometric Redshifts Using Support Vector Machines , 2004, astro-ph/0412005.

[32]  H. Hoekstra,et al.  KiDS-450: testing extensions to the standard cosmological model , 2016, 1610.04606.

[33]  H. Hoekstra,et al.  Studying galaxy troughs and ridges using weak gravitational lensing with the Kilo-Degree Survey , 2018, Monthly Notices of the Royal Astronomical Society.

[34]  Ben Hoyle,et al.  Measuring photometric redshifts using galaxy images and Deep Neural Networks , 2015, Astron. Comput..

[35]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[36]  B. Yanny,et al.  Star/galaxy separation at faint magnitudes: application to a simulated Dark Energy Survey , 2013, 1306.5236.

[37]  P. Schneider,et al.  KiDS-450: The tomographic weak lensing power spectrum and constraints on cosmological parameters , 2017, 1706.02892.

[38]  M. Brescia,et al.  PHOTOMETRIC REDSHIFTS FOR QUASARS IN MULTI-BAND SURVEYS , 2013, 1305.5641.

[39]  A. Hopkins,et al.  Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data , 2015, 1507.00735.

[40]  G. Longo,et al.  Photometric redshift estimation based on data mining with PhotoRApToR , 2015, Experimental Astronomy.

[41]  M. Radovich,et al.  Towards a census of supercompact massive galaxies in the Kilo Degree Survey , 2015, 1507.00731.

[42]  P. Schneider,et al.  KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.

[43]  J. Loveday,et al.  The stellar-to-halo mass relation of GAMA galaxies from 100 deg2 of KiDS weak lensing data , 2016, 1601.06791.

[44]  Stephen J. Roberts,et al.  Improving photometric redshift estimation using GPz: size information, post processing and improved photometry , 2017, 1712.02256.

[45]  N. Gehrels,et al.  Spectroscopic Needs for Imaging Dark Energy Experiments , 2015 .

[46]  H. Hoekstra,et al.  CFHTLenS: Improving the quality of photometric redshifts with precision photometry , 2011, 1111.4434.

[47]  O. Fèvre,et al.  THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.

[48]  N. R. Napolitano,et al.  The third data release of the Kilo-Degree Survey and associated data products , 2017, 1703.02991.

[49]  Kai Lars Polsterer,et al.  Photometric redshift estimation via deep learning , 2017, 1706.02467.

[50]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[51]  M. Fairbairn,et al.  GAz: a genetic algorithm for photometric redshift estimation , 2014, 1412.5997.

[52]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[53]  C. Heymans,et al.  The 2-degree Field Lensing Survey: design and clustering measurements , 2016, 1608.02668.

[54]  R. Ellis Faint blue galaxies , 1997, astro-ph/9704019.

[55]  Aniruddha R. Thakar,et al.  Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe , 2017, 1703.00052.

[56]  Iftach Sadeh,et al.  ANNz2: Photometric Redshift and Probability Distribution Function Estimation using Machine Learning , 2015, 1507.00490.

[57]  Richard G. Bower,et al.  A Bayesian classifier for photometric redshifts: identification of high-redshift clusters , 1999 .

[58]  D. Gerdes,et al.  PHAT: PHoto-z Accuracy Testing , 2010, 1008.0658.

[59]  H. Hoekstra,et al.  CFHTLenS: the relation between galaxy dark matter haloes and baryons from weak gravitational lensing , 2013, 1304.4265.

[60]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[61]  E. Spillar,et al.  Photometric Redshifts of Galaxies , 1986 .

[62]  A. Hopkins,et al.  A KiDS weak lensing analysis of assembly bias in GAMA galaxy groups , 2017, 1703.06657.

[63]  L. Moscardini,et al.  Searching for galaxy clusters in the Kilo-Degree Survey , 2017, 1701.02954.

[64]  P. Schipani,et al.  The VOICE survey: VST Optical imaging of the CDFS and ES1 fields , 2017, 1704.01495.

[65]  M. Shmakova,et al.  The Efficacy of Galaxy Shape Parameters in Photometric Redshift Estimation: A Neural Network Approach , 2011, 1101.4011.

[66]  Edwin Valentijn,et al.  Gravitational lensing analysis of the Kilo-Degree Survey , 2015, 1507.00738.

[67]  Jorge Nocedal,et al.  Representations of quasi-Newton matrices and their use in limited memory methods , 1994, Math. Program..

[68]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[69]  Sergey E. Koposov,et al.  Combining Dark Energy Survey Science Verification data with near-infrared data from the ESO VISTA Hemisphere Survey , 2014, 1407.3801.

[70]  R. Nichol,et al.  redMaGiC: selecting luminous red galaxies from the DES Science Verification data , 2015, 1507.05460.

[71]  Roberto Tagliaferri,et al.  Neural Networks for Photometric Redshifts Evaluation , 2003, WIRN.

[72]  B. Weiner,et al.  The Arizona CDFS Environment Survey (ACES): A Magellan/IMACS Spectroscopic Survey of the Chandra Deep Field-South† , 2011, 1112.0312.

[73]  V. Ripepi,et al.  Virmos-VLT deep survey (VVDS) , 2003, SPIE Astronomical Telescopes + Instrumentation.

[74]  Simon P. Driver,et al.  The VISTA Kilo-degree Infrared Galaxy (VIKING) Survey: Bridging the Gap between Low and High Redshift , 2013 .

[75]  Massimo Brescia,et al.  The first and second data releases of the Kilo-Degree Survey , 2015, 1507.00742.

[76]  A. Connolly,et al.  THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.

[77]  Alexander S. Szalay,et al.  Photometric redshifts for the SDSS Data Release 12 , 2016, 1603.09708.

[78]  John A. Peacock,et al.  TWO MICRON ALL SKY SURVEY PHOTOMETRIC REDSHIFT CATALOG: A COMPREHENSIVE THREE-DIMENSIONAL CENSUS OF THE WHOLE SKY , 2013, 1311.5246.

[79]  Keivan G. Stassun,et al.  The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory , 2016, 1608.02013.

[80]  Daniel Masters,et al.  The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1 , 2017, 1704.06665.

[81]  N. R. Napolitano,et al.  Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks , 2017, 1702.07675.

[82]  A. Hopkins,et al.  Dependence of GAMA galaxy halo masses on the cosmic web environment from 100 deg2 of KiDS weak lensing data , 2016, 1604.07233.

[83]  F. Rademakers,et al.  ROOT — An object oriented data analysis framework , 1997 .

[84]  Edwin Valentijn,et al.  KiDS+GAMA : cosmology constraints from a joint analysis of cosmic shear, galaxy-galaxy lensing, and angular clustering , 2017, 1706.05004.

[85]  Ofer Lahav,et al.  ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2004 .

[86]  V. Villar,et al.  UV-TO-FIR ANALYSIS OF SPITZER/IRAC SOURCES IN THE EXTENDED GROTH STRIP. II. PHOTOMETRIC REDSHIFTS, STELLAR MASSES, AND STAR FORMATION RATES , 2011, 1102.4335.

[87]  D. Hogg,et al.  WISE PHOTOMETRY FOR 400 MILLION SDSS SOURCES , 2014, 1410.7397.

[88]  Huan Lin,et al.  Estimating the redshift distribution of photometric galaxy samples , 2008 .

[89]  S. Driver,et al.  ProFound : source extraction and application to modern survey data , 2018, 1802.00937.

[90]  W. A. Baum Photoelectric determinations of redshifts beyond 0.2 c. , 1957 .

[91]  A. Hopkins,et al.  Halo ellipticity of GAMA galaxy groups from KiDS weak lensing , 2016, 1610.04226.

[92]  A. Hopkins,et al.  Galaxy And Mass Assembly: accurate panchromatic photometry from optical priors using lambdar , 2016 .

[93]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[94]  Maria E. S. Pereira,et al.  Morpho-z: improving photometric redshifts with galaxy morphology , 2017, 1707.03169.

[95]  Roman Zitlau,et al.  Feature importance for machine learning redshifts applied to SDSS galaxies , 2014, 1410.4696.

[96]  B. T. Soifer,et al.  Photometric Redshifts in the IRAC Shallow Survey , 2006 .

[97]  D. C. Koo,et al.  Optical multicolors - A poor person's z machine for galaxies , 1985 .

[98]  J. Gunn,et al.  A New Technique for Galaxy Photometric Redshifts in the Sloan Digital Sky Survey , 2007, 0707.3443.

[99]  M. Radovich,et al.  The galaxy environment in GAMA G3C groups using the Kilo Degree Survey Data Release 3 , 2017, 1712.07670.

[100]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[101]  Frank Rosenblatt,et al.  PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .

[102]  A. Hopkins,et al.  WISE × SuperCOSMOS PHOTOMETRIC REDSHIFT CATALOG: 20 MILLION GALAXIES OVER 3π STERADIANS , 2016, 1607.01182.

[103]  Evan Jones,et al.  Analysis of a Custom Support Vector Machine for Photometric Redshift Estimation and the Inclusion of Galaxy Shape Information , 2016, 1607.00044.

[104]  Massimo Brescia,et al.  Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2 , 2015 .

[105]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[106]  Takashi Ichikawa,et al.  GALAXY COLORS IN VARIOUS PHOTOMETRIC BAND SYSTEMS , 1995 .

[107]  J. Loveday,et al.  Galaxy And Mass Assembly (GAMA): the galaxy luminosity function within the cosmic web , 2014, 1412.2141.

[108]  Wayne Hu,et al.  Effects of Photometric Redshift Uncertainties on Weak-Lensing Tomography , 2005 .

[109]  M. Way,et al.  NEW APPROACHES TO PHOTOMETRIC REDSHIFT PREDICTION VIA GAUSSIAN PROCESS REGRESSION IN THE SLOAN DIGITAL SKY SURVEY , 2009, 0905.4081.

[110]  B. Garilli,et al.  THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE , 2009 .

[111]  W. M. Wood-Vasey,et al.  THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA , 2015, 1508.04473.

[112]  J. Frieman,et al.  Photometric Redshift Error Estimators , 2007, 0711.0962.

[113]  H. Hoekstra,et al.  The masses of satellites in GAMA galaxy groups from 100 square degrees of KiDS weak lensing data , 2015, 1507.00737.

[114]  A. Hopkins,et al.  Galaxy and Mass Assembly (GAMA): Exploring the WISE Web in G12 , 2016, 1607.01190.