Photometric redshifts for the Kilo-Degree Survey
暂无分享,去创建一个
M. Bilicki | A. Amon | M. Brescia | S. Cavuoti | G. Longo | G. A. Verdoes Kleijn | A. Grado | N. Napolitano | T. Erben | H. Hildebrandt | C. Vellucci | S. Brough | C. Wolf | C. Blake | K. Kuijken | H. Hoekstra | C. Heymans | G. Longo | A. Grado | S. Brough | D. Parkinson | H. Hildebrandt | C. Wolf | M. Brescia | S. Cavuoti | C. Blake | M. V. Costa-Duarte | L. Wang | K. Glazebrook | T. Jarrett | T. Erben | N. Napolitano | K. Kuijken | M. Bilicki | G. V. Verdoes Kleijn | M. Brown | S. Joudaki | H. Hoekstra | M. J. I. Brown | K. Glazebrook | C. Heymans | V. Amaro | J. D. de Jong | C. Georgiou | A. Amon | C. Vellucci | T. Jarrett | V. Amaro | J. T. A. de Jong | C. Georgiou | S. Joudaki | D. Parkinson | L. Wang | M. Costa-Duarte | Maciej Bilicki
[1] Michigan.,et al. Estimating photometric redshifts with artificial neural networks , 2002, astro-ph/0203250.
[2] F. Tegenfeldt,et al. TMVA - Toolkit for multivariate data analysis , 2012 .
[3] D. Gerdes,et al. Weak lensing by galaxy troughs in DES Science Verification data , 2015, 1507.05090.
[4] Karl Glazebrook,et al. The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.
[5] Ruth H. Pater,et al. Nuclear Instruments and Methods in Physics Research. Section B; Microstructural Characterization of Semi-Interpenetrating Polymer Networks by Positron Lifetime Spectroscopy , 1998 .
[6] B. Carry,et al. Mining the Kilo-Degree Survey for solar system objects , 2017, 1711.02780.
[7] R. Nichol,et al. The VIMOS Public Extragalactic Redshift Survey (VIPERS) - an unprecedented view of galaxies and large-scale structure at 0.5 < z < 1.2 , 2013, 1303.2623.
[8] Jiangang Hao,et al. ArborZ: PHOTOMETRIC REDSHIFTS USING BOOSTED DECISION TREES , 2009, The Astrophysical Journal.
[9] Martin G. Cohen,et al. THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.
[10] A. Hopkins,et al. GALAXY AND MASS ASSEMBLY (GAMA): MID-INFRARED PROPERTIES AND EMPIRICAL RELATIONS FROM WISE , 2014, 1401.0837.
[11] C. Heymans,et al. The 2-degree Field Lensing Survey: photometric redshifts from a large new training sample to r < 19.5 , 2016, 1612.00839.
[12] S. Bamford,et al. Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release , 2010, 1009.0614.
[13] Adam O. Kalinich,et al. MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS , 2015, 1509.03318.
[14] Paolo Coppi,et al. EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.
[15] Eric Jones,et al. SciPy: Open Source Scientific Tools for Python , 2001 .
[16] J. A. Vázquez-Mata,et al. Galaxy and mass assembly (GAMA): End of survey report and data release 2 , 2015, 1506.08222.
[17] R. Nichol,et al. Photometric redshift analysis in the Dark Energy Survey Science Verification data , 2014, 1406.4407.
[18] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[19] S. Driver,et al. Galaxy And Mass Assembly (GAMA): Curation and reanalysis of 16.6k redshifts in the G10/COSMOS region , 2014, 1409.3574.
[20] M. Way. GALAXY ZOO MORPHOLOGY AND PHOTOMETRIC REDSHIFTS IN THE SLOAN DIGITAL SKY SURVEY , 2011, 1104.3758.
[21] R. McMahon,et al. First discoveries of z ̃ 6 quasars with the Kilo-Degree Survey and VISTA Kilo-Degree Infrared Galaxy survey , 2015, 1507.00726.
[22] GaaP: PSF- and aperture-matched photometry using shapelets , 2006, astro-ph/0610606.
[23] C. Heymans,et al. 2dFLenS and KiDS: determining source redshift distributions with cross-correlations , 2016, 1611.07578.
[24] Massimo Brescia,et al. Photometric redshifts with Quasi Newton Algorithm (MLPQNA). Results in the PHAT1 contest , 2012, 1206.0876.
[25] Massimo Brescia,et al. METAPHOR: a machine-learning-based method for the probability density estimation of photometric redshifts , 2016, 1611.02162.
[26] Karl Glazebrook,et al. KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering , 2017, 1707.06627.
[27] Edwin A. Valentijn,et al. The Kilo-Degree Survey , 2012, Experimental Astronomy.
[28] Massimo Brescia,et al. Machine Learning based photometric redshifts for the KiDS ESO DR2 galaxies , 2015 .
[29] Michael J. Kurtz,et al. μ-PhotoZ: Photometric Redshifts by Inverting the Tolman Surface Brightness Test , 2007, 0707.0484.
[30] E. al.,et al. The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.
[31] Y. Wadadekar. Estimating Photometric Redshifts Using Support Vector Machines , 2004, astro-ph/0412005.
[32] H. Hoekstra,et al. KiDS-450: testing extensions to the standard cosmological model , 2016, 1610.04606.
[33] H. Hoekstra,et al. Studying galaxy troughs and ridges using weak gravitational lensing with the Kilo-Degree Survey , 2018, Monthly Notices of the Royal Astronomical Society.
[34] Ben Hoyle,et al. Measuring photometric redshifts using galaxy images and Deep Neural Networks , 2015, Astron. Comput..
[35] Donald W. Sweeney,et al. LSST Science Book, Version 2.0 , 2009, 0912.0201.
[36] B. Yanny,et al. Star/galaxy separation at faint magnitudes: application to a simulated Dark Energy Survey , 2013, 1306.5236.
[37] P. Schneider,et al. KiDS-450: The tomographic weak lensing power spectrum and constraints on cosmological parameters , 2017, 1706.02892.
[38] M. Brescia,et al. PHOTOMETRIC REDSHIFTS FOR QUASARS IN MULTI-BAND SURVEYS , 2013, 1305.5641.
[39] A. Hopkins,et al. Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data , 2015, 1507.00735.
[40] G. Longo,et al. Photometric redshift estimation based on data mining with PhotoRApToR , 2015, Experimental Astronomy.
[41] M. Radovich,et al. Towards a census of supercompact massive galaxies in the Kilo Degree Survey , 2015, 1507.00731.
[42] P. Schneider,et al. KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.
[43] J. Loveday,et al. The stellar-to-halo mass relation of GAMA galaxies from 100 deg2 of KiDS weak lensing data , 2016, 1601.06791.
[44] Stephen J. Roberts,et al. Improving photometric redshift estimation using GPz: size information, post processing and improved photometry , 2017, 1712.02256.
[45] N. Gehrels,et al. Spectroscopic Needs for Imaging Dark Energy Experiments , 2015 .
[46] H. Hoekstra,et al. CFHTLenS: Improving the quality of photometric redshifts with precision photometry , 2011, 1111.4434.
[47] O. Fèvre,et al. THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.
[48] N. R. Napolitano,et al. The third data release of the Kilo-Degree Survey and associated data products , 2017, 1703.02991.
[49] Kai Lars Polsterer,et al. Photometric redshift estimation via deep learning , 2017, 1706.02467.
[50] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[51] M. Fairbairn,et al. GAz: a genetic algorithm for photometric redshift estimation , 2014, 1412.5997.
[52] E. Bertin,et al. SExtractor: Software for source extraction , 1996 .
[53] C. Heymans,et al. The 2-degree Field Lensing Survey: design and clustering measurements , 2016, 1608.02668.
[54] R. Ellis. Faint blue galaxies , 1997, astro-ph/9704019.
[55] Aniruddha R. Thakar,et al. Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe , 2017, 1703.00052.
[56] Iftach Sadeh,et al. ANNz2: Photometric Redshift and Probability Distribution Function Estimation using Machine Learning , 2015, 1507.00490.
[57] Richard G. Bower,et al. A Bayesian classifier for photometric redshifts: identification of high-redshift clusters , 1999 .
[58] D. Gerdes,et al. PHAT: PHoto-z Accuracy Testing , 2010, 1008.0658.
[59] H. Hoekstra,et al. CFHTLenS: the relation between galaxy dark matter haloes and baryons from weak gravitational lensing , 2013, 1304.4265.
[60] Molefe Mokoene,et al. The Messenger , 1995, Outrageous Fortune.
[61] E. Spillar,et al. Photometric Redshifts of Galaxies , 1986 .
[62] A. Hopkins,et al. A KiDS weak lensing analysis of assembly bias in GAMA galaxy groups , 2017, 1703.06657.
[63] L. Moscardini,et al. Searching for galaxy clusters in the Kilo-Degree Survey , 2017, 1701.02954.
[64] P. Schipani,et al. The VOICE survey: VST Optical imaging of the CDFS and ES1 fields , 2017, 1704.01495.
[65] M. Shmakova,et al. The Efficacy of Galaxy Shape Parameters in Photometric Redshift Estimation: A Neural Network Approach , 2011, 1101.4011.
[66] Edwin Valentijn,et al. Gravitational lensing analysis of the Kilo-Degree Survey , 2015, 1507.00738.
[67] Jorge Nocedal,et al. Representations of quasi-Newton matrices and their use in limited memory methods , 1994, Math. Program..
[68] N. Benı́tez. Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.
[69] Sergey E. Koposov,et al. Combining Dark Energy Survey Science Verification data with near-infrared data from the ESO VISTA Hemisphere Survey , 2014, 1407.3801.
[70] R. Nichol,et al. redMaGiC: selecting luminous red galaxies from the DES Science Verification data , 2015, 1507.05460.
[71] Roberto Tagliaferri,et al. Neural Networks for Photometric Redshifts Evaluation , 2003, WIRN.
[72] B. Weiner,et al. The Arizona CDFS Environment Survey (ACES): A Magellan/IMACS Spectroscopic Survey of the Chandra Deep Field-South† , 2011, 1112.0312.
[73] V. Ripepi,et al. Virmos-VLT deep survey (VVDS) , 2003, SPIE Astronomical Telescopes + Instrumentation.
[74] Simon P. Driver,et al. The VISTA Kilo-degree Infrared Galaxy (VIKING) Survey: Bridging the Gap between Low and High Redshift , 2013 .
[75] Massimo Brescia,et al. The first and second data releases of the Kilo-Degree Survey , 2015, 1507.00742.
[76] A. Connolly,et al. THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.
[77] Alexander S. Szalay,et al. Photometric redshifts for the SDSS Data Release 12 , 2016, 1603.09708.
[78] John A. Peacock,et al. TWO MICRON ALL SKY SURVEY PHOTOMETRIC REDSHIFT CATALOG: A COMPREHENSIVE THREE-DIMENSIONAL CENSUS OF THE WHOLE SKY , 2013, 1311.5246.
[79] Keivan G. Stassun,et al. The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory , 2016, 1608.02013.
[80] Daniel Masters,et al. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1 , 2017, 1704.06665.
[81] N. R. Napolitano,et al. Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks , 2017, 1702.07675.
[82] A. Hopkins,et al. Dependence of GAMA galaxy halo masses on the cosmic web environment from 100 deg2 of KiDS weak lensing data , 2016, 1604.07233.
[83] F. Rademakers,et al. ROOT — An object oriented data analysis framework , 1997 .
[84] Edwin Valentijn,et al. KiDS+GAMA : cosmology constraints from a joint analysis of cosmic shear, galaxy-galaxy lensing, and angular clustering , 2017, 1706.05004.
[85] Ofer Lahav,et al. ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2004 .
[86] V. Villar,et al. UV-TO-FIR ANALYSIS OF SPITZER/IRAC SOURCES IN THE EXTENDED GROTH STRIP. II. PHOTOMETRIC REDSHIFTS, STELLAR MASSES, AND STAR FORMATION RATES , 2011, 1102.4335.
[87] D. Hogg,et al. WISE PHOTOMETRY FOR 400 MILLION SDSS SOURCES , 2014, 1410.7397.
[88] Huan Lin,et al. Estimating the redshift distribution of photometric galaxy samples , 2008 .
[89] S. Driver,et al. ProFound : source extraction and application to modern survey data , 2018, 1802.00937.
[90] W. A. Baum. Photoelectric determinations of redshifts beyond 0.2 c. , 1957 .
[91] A. Hopkins,et al. Halo ellipticity of GAMA galaxy groups from KiDS weak lensing , 2016, 1610.04226.
[92] A. Hopkins,et al. Galaxy And Mass Assembly: accurate panchromatic photometry from optical priors using lambdar , 2016 .
[93] Gaël Varoquaux,et al. The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.
[94] Maria E. S. Pereira,et al. Morpho-z: improving photometric redshifts with galaxy morphology , 2017, 1707.03169.
[95] Roman Zitlau,et al. Feature importance for machine learning redshifts applied to SDSS galaxies , 2014, 1410.4696.
[96] B. T. Soifer,et al. Photometric Redshifts in the IRAC Shallow Survey , 2006 .
[97] D. C. Koo,et al. Optical multicolors - A poor person's z machine for galaxies , 1985 .
[98] J. Gunn,et al. A New Technique for Galaxy Photometric Redshifts in the Sloan Digital Sky Survey , 2007, 0707.3443.
[99] M. Radovich,et al. The galaxy environment in GAMA G3C groups using the Kilo Degree Survey Data Release 3 , 2017, 1712.07670.
[100] R. Nichol,et al. Euclid Definition Study Report , 2011, 1110.3193.
[101] Frank Rosenblatt,et al. PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .
[102] A. Hopkins,et al. WISE × SuperCOSMOS PHOTOMETRIC REDSHIFT CATALOG: 20 MILLION GALAXIES OVER 3π STERADIANS , 2016, 1607.01182.
[103] Evan Jones,et al. Analysis of a Custom Support Vector Machine for Photometric Redshift Estimation and the Inclusion of Galaxy Shape Information , 2016, 1607.00044.
[104] Massimo Brescia,et al. Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2 , 2015 .
[105] W. M. Wood-Vasey,et al. THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.
[106] Takashi Ichikawa,et al. GALAXY COLORS IN VARIOUS PHOTOMETRIC BAND SYSTEMS , 1995 .
[107] J. Loveday,et al. Galaxy And Mass Assembly (GAMA): the galaxy luminosity function within the cosmic web , 2014, 1412.2141.
[108] Wayne Hu,et al. Effects of Photometric Redshift Uncertainties on Weak-Lensing Tomography , 2005 .
[109] M. Way,et al. NEW APPROACHES TO PHOTOMETRIC REDSHIFT PREDICTION VIA GAUSSIAN PROCESS REGRESSION IN THE SLOAN DIGITAL SKY SURVEY , 2009, 0905.4081.
[110] B. Garilli,et al. THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE , 2009 .
[111] W. M. Wood-Vasey,et al. THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA , 2015, 1508.04473.
[112] J. Frieman,et al. Photometric Redshift Error Estimators , 2007, 0711.0962.
[113] H. Hoekstra,et al. The masses of satellites in GAMA galaxy groups from 100 square degrees of KiDS weak lensing data , 2015, 1507.00737.
[114] A. Hopkins,et al. Galaxy and Mass Assembly (GAMA): Exploring the WISE Web in G12 , 2016, 1607.01190.