Robustness analysis of continuous periodic systems using integral quadratic constraints

A general approach to analyze the robust performance and robust stability via the worst-case input/output gain for uncertain, linear time periodic systems is presented. The input/output behavior of the uncertain block is described by an integral quadratic constraint. A dissipation inequality is derived to compute an upper bound for this gain. The worst-case gain condition can be formulated as a semidefinite program and the result can be interpreted as a Bounded Real Lemma for uncertain linear periodic systems. The effectiveness of the proposed method is demonstrated on a realistic numerical example of a controlled wind turbine.

[1]  Carsten W. Scherer,et al.  Robust stability and performance analysis based on integral quadratic constraints , 2016, Eur. J. Control.

[2]  András Varga,et al.  On solving periodic Riccati equations , 2008, Numer. Linear Algebra Appl..

[3]  Jongrae Kim,et al.  Robustness analysis of linear periodic time-varying systems subject to structured uncertainty , 2006, Syst. Control. Lett..

[4]  Leonid B. Freidovich,et al.  SDP-based approximation of stabilising solutions for periodic matrix Riccati differential equations , 2016, Int. J. Control.

[5]  Bo Kågström,et al.  A numerical evaluation of solvers for the periodic Riccati differential equation , 2010 .

[6]  Jun Zhou,et al.  H2 and H∞ norm computations of linear continuous-time periodic systems via the skew analysis of frequency response operators , 2002, Autom..

[7]  Patrizio Colaneri,et al.  Continuous-time periodic systems in H2 and H∞. Part I: Theoretical aspects , 2000, Kybernetika.

[8]  Peter J Seiler,et al.  Less conservative robustness analysis of linear parameter varying systems using integral quadratic constraints , 2016 .

[9]  Alexandre Megretski,et al.  A cutting plane algorithm for robustness analysis of periodically time-varying systems , 2001, IEEE Trans. Autom. Control..

[10]  Peter Seiler,et al.  Integral quadratic constraints for delayed nonlinear and parameter-varying systems , 2015, Autom..

[11]  Alexandre Megretski,et al.  New results for analysis of systems with repeated nonlinearities , 2001, Autom..

[12]  Leonid B. Freidovich,et al.  LMI approach for solving periodic matrix Riccati equation , 2007, PSYCO.

[13]  Peter Seiler,et al.  Stability Analysis With Dissipation Inequalities and Integral Quadratic Constraints , 2015, IEEE Transactions on Automatic Control.

[14]  Peter J Seiler,et al.  Load reduction on a clipper liberty wind turbine with linear parameter-varying individual blade pitch control , 2017 .

[15]  Peter Seiler,et al.  Robustness analysis with parameter-varying integral quadratic constraints , 2015, 2015 American Control Conference (ACC).

[16]  Fen Wu,et al.  Induced L2‐norm control for LPV systems with bounded parameter variation rates , 1996 .

[17]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[18]  Carsten W. Scherer,et al.  Invariance With Dynamic Multipliers , 2018, IEEE Transactions on Automatic Control.

[19]  Daniel Alazard,et al.  Robustness Analysis of Helicopter Ground Resonance with Parametric Uncertainties in Blade Properties , 2013 .

[20]  Andreas Varga,et al.  Computational issues for linear periodic systems: paradigms, algorithms, open problems , 2013, Int. J. Control.

[21]  U.T. Jonsson,et al.  Robustness analysis of periodic systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[22]  Carsten W. Scherer,et al.  IQC‐synthesis with general dynamic multipliers , 2014 .

[23]  Jason Jonkman,et al.  FAST User's Guide , 2005 .

[24]  Peter Seiler,et al.  Robustness analysis of linear parameter varying systems using integral quadratic constraints , 2014, 2014 American Control Conference.