Data-driven fault detection and estimation in thermal pulse combustors

Abstract This paper presents the development of a dynamic data-driven statistical method for: (a) early detection of incipient faults and (b) parameter estimation for prognosis of forthcoming failures and operational disruptions (e.g. flame extinction) in thermal pulse combustors. From these perspectives, reduction in the tailpipe friction coefficient is estimated from time-series data of pressure oscillations. The algorithms for parameter estimation are built upon the principles of Symbolic Dynamics, Information Theory and Statistical Pattern Recognition. The proposed algorithms have been tested on an experimentally validated simulation model of a generic thermal pulse combustor.

[1]  Visarath In,et al.  Maintenance of chaos in a computational model of a thermal pulse combustor. , 1997, Chaos.

[2]  Asok Ray,et al.  Symbolic dynamic analysis of complex systems for anomaly detection , 2004, Signal Process..

[3]  Asok Ray,et al.  Fault detection and isolation in aircraft gas turbine engines. Part 1: Underlying concept , 2008 .

[4]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[5]  Kushal Mukherjee,et al.  Fault detection and isolation in aircraft gas turbine engines. Part 2: Validation on a simulation test bed , 2008 .

[6]  Shalabh Gupta,et al.  Symbolic time series analysis of ultrasonic data for early detection of fatigue damage , 2007 .

[7]  S. Mallat A wavelet tour of signal processing , 1998 .

[8]  Asok Ray,et al.  Symbolic time series analysis via wavelet-based partitioning , 2006 .

[9]  Shalabh Gupta,et al.  Anomaly Detection in Thermal Pulse Combustors Using Symbolic Time Series Analysis , 2006 .

[10]  Asok Ray,et al.  Review and comparative evaluation of symbolic dynamic filtering for detection of anomaly patterns , 2009, 2008 American Control Conference.

[11]  R. Badii,et al.  Complexity: Hierarchical Structures and Scaling in Physics , 1997 .

[12]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[13]  Matthew B Kennel,et al.  Statistically relaxing to generating partitions for observed time-series data. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  W. J. Langford Statistical Methods , 1959, Nature.

[15]  A. Morelli Inverse Problem Theory , 2010 .

[16]  C. S. Daw,et al.  Controlling chaos in a model of thermal pulse combustion , 1995 .

[17]  George A. Richards,et al.  Thermal Pulse Combustion , 1993 .

[18]  Asok Ray,et al.  Symbolic time series analysis via wavelet-based partitioning , 2006, Signal Process..