In situ neutron radiography analysis of graphite/NCA lithium-ion battery during overcharge

[1]  Yoshiyasu Saito,et al.  State of charge (SOC) dependence of lithium carbonate on LiNi0.8Co0.15Al0.05O2 electrode for lithium-ion batteries , 2011 .

[2]  Anna G. Stefanopoulou,et al.  Neutron Imaging of Lithium Concentration in LFP Pouch Cell Battery , 2011 .

[3]  Anthony D. Santamaria,et al.  Developing a 3D neutron tomography method for proton exchange membrane fuel cells , 2010 .

[4]  Hailong Chen,et al.  In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. , 2010, Nature materials.

[5]  P. Ramadass,et al.  Analysis of internal short-circuit in a lithium ion cell , 2009 .

[6]  Jonn Axsen,et al.  Are Batteries Ready for Plug-in Hybrid Buyers? , 2009 .

[7]  Ian S. Anderson,et al.  Neutron Imaging and Applications , 2009 .

[8]  John Newman,et al.  Two-Dimensional Modeling of Lithium Deposition during Cell Charging , 2008 .

[9]  Jonn Axsen,et al.  Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008 , 2008 .

[10]  Jean-Marie Tarascon,et al.  Dendrite short-circuit and fuse effect on Li/polymer/Li cells , 2006 .

[11]  Yuichi Sato,et al.  Overcharge reaction of lithium-ion batteries , 2005 .

[12]  J. Banhart,et al.  Industrial applications at the new cold neutron radiography and tomography facility of the HMI , 2005 .

[13]  F C de Beer,et al.  Neutron radiography and other NDE tests of main rotor helicopter blades. , 2004, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[14]  P. Novák,et al.  In situ neutron radiography of lithium-ion batteries: the gas evolution on graphite electrodes during the charging , 2004 .

[15]  W J Richards,et al.  Neutron tomography developments and applications. , 2003, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[16]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[17]  P. Novák,et al.  In situ neutron radiography of lithium-ion batteries during charge/discharge cycling , 2001 .

[18]  J. Selman,et al.  Cooperative research on safety fundamentals of lithium batteries , 2001 .

[19]  A. Negishi,et al.  Thermal behaviors of lithium-ion cells during overcharge , 2001 .

[20]  Marc Doyle,et al.  Mathematical Modeling of the Lithium Deposition Overcharge Reaction in Lithium‐Ion Batteries Using Carbon‐Based Negative Electrodes , 1999 .

[21]  J.-N. Chazalviel,et al.  Dendritic growth mechanisms in lithium/polymer cells , 1999 .

[22]  J. Yamaki,et al.  A consideration of lithium cell safety , 1999 .

[23]  S. Basu Early studies on anodic properties of lithium intercalated graphite , 1999 .

[24]  J.-N. Chazalviel,et al.  In situ study of dendritic growth inlithium/PEO-salt/lithium cells , 1998 .

[25]  K. Yoneda,et al.  Application of NR for research in electrochemical systems , 1996 .

[26]  K. Yoneda,et al.  Application of Neutron Radiography to Visualize the Motion of Lithium Ions in Lithium‐Ion Conducting Materials , 1996 .

[27]  E. Chassaing,et al.  experimental evidence for gravity induced motion in the vicinity of ramified electrodeposits , 1994 .

[28]  J. Chazalviel,et al.  Electrochemical aspects of the generation of ramified metallic electrodeposits. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[29]  Nares Chankow,et al.  Neutron radiography. , 1969, British medical journal.

[30]  Ian S. Anderson,et al.  Neutron imaging and applications : a reference for the imaging community , 2009 .

[31]  R. Spotnitz,et al.  Abuse behavior of high-power, lithium-ion cells , 2003 .

[32]  J. Jensen,et al.  Advanced batteries , 1978, Nature.