Adaptive output control of a class of uncertain chaotic systems

In this paper, a new observer-based backstepping output control scheme is proposed for stabilizing and controlling a class of uncertain chaotic systems. The controller is designed through the use of a robust observer and backstepping technique. We firstly show that many chaotic systems as paradigms in the research of chaos can be transformed into a class of nonlinear systems in the feedback form. Secondly, the synchronization problem is converted to the tracking problem from control theory, thereby leading to the use of state observer design techniques. A new observer is utilized to estimate the unmeasured states. Unlike some existing methods for chaos control, no priori knowledge on the system parameters is required and only the output signal is available for control purpose. The Lyapunov functions are quadratic in the state estimates, the observer errors and the parameter estimation error based on the backstepping technique. It is shown that not only global stability is guaranteed by the proposed controller, but also both transient and asymptotic tracking performances are quantified as explicit functions of the design parameters so that designers can tune the design parameters in an explicit way to obtain the desired closed-loop behavior.

[1]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[2]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[3]  G. Duffing,et al.  Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung , 1918 .

[4]  Ercan Solak,et al.  Partial identification of Lorenz system and its application to key space reduction of chaotic cryptosystems , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.

[5]  L. Chua,et al.  The double scroll family , 1986 .

[6]  Y. Zhang,et al.  Adaptive Output Control of a Class of Time-Varying Uncertain Nonlinear Systems , 2005 .

[7]  Leon O. Chua,et al.  ON ADAPTIVE SYNCHRONIZATION AND CONTROL OF NONLINEAR DYNAMICAL SYSTEMS , 1996 .

[8]  H. Nijmeijer,et al.  On Lyapunov control of the Duffing equation , 1995 .

[9]  M. Bernardo An adaptive approach to the control and synchronization of continuous-time chaotic systems , 1996 .

[10]  Keiji Konishi,et al.  Stability of extended delayed-feedback control for discrete-time chaotic systems , 1999 .

[11]  L. O. Chua,et al.  The double scroll family. I: Rigorous of chaos. II: Rigorous analysis of bifurcation phenomena , 1986 .

[12]  Jinhu Lu,et al.  Adaptive synchronization of uncertain Rossler hyperchaotic system based on parameter identification , 2004 .

[13]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[14]  Thomas Kailath,et al.  Linear Systems , 1980 .

[15]  Guanrong Chen,et al.  Secure synchronization of a class of chaotic systems from a nonlinear observer approach , 2005, IEEE Transactions on Automatic Control.

[16]  Zhong-Ping Jiang,et al.  Global output feedback tracking for nonlinear systems in generalized output-feedback canonical form , 2002, IEEE Trans. Autom. Control..

[17]  Guanrong Chen,et al.  Adaptive Control of the Uncertain Duffing Oscillator , 1997 .

[18]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[19]  Guo-Ping Jiang,et al.  Stabilizing unstable equilibria of chaotic systems from a State observer approach , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.

[20]  Ming-Jyi Jang,et al.  Sliding Mode Control of Chaos in the cubic Chua's Circuit System , 2002, Int. J. Bifurc. Chaos.

[21]  Chun-Mei Yang,et al.  A Detailed Study of Adaptive Control of Chaotic Systems with Unknown Parameters , 1998 .

[22]  Hendrik Richter,et al.  Local Control of Chaotic Systems — A Lyapunov Approach , 1998 .

[23]  Hamel Georg Duffing, Ingenieur: Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung. Sammlung Vieweg. Heft 41/42, Braunschweig 1918. VI+134 S , 1921 .

[24]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[25]  Shuzhi Sam Ge,et al.  Adaptive backstepping Control of a Class of Chaotic Systems , 2000, Int. J. Bifurc. Chaos.

[26]  B. Ravindra,et al.  A General Approach in the Design of Active controllers for nonlinear Systems exhibiting Chaos , 2000, Int. J. Bifurc. Chaos.

[27]  Haipeng Peng,et al.  Time-Delayed Feedback Control of Time-Delay Chaotic Systems , 2003, Int. J. Bifurc. Chaos.

[28]  O. Rössler An equation for continuous chaos , 1976 .

[29]  Keiji Konishi,et al.  Sliding mode control for a class of chaotic systems , 1998 .

[30]  Ying Zhang,et al.  Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis , 2004, IEEE Trans. Autom. Control..

[31]  Xinghuo Yu Controlling Lorenz chaos , 1996, Int. J. Syst. Sci..

[32]  Guanrong Chen,et al.  On time-delayed feedback control of chaotic systems , 1999 .

[33]  Ying Zhang,et al.  Adaptive backstepping control design for systems with unknown high-frequency gain , 2000, IEEE Trans. Autom. Control..