Adaptive output control of a class of uncertain chaotic systems
暂无分享,去创建一个
Jing Zhou | Meng Joo Er | Jing Zhou | M. Er
[1] Ying-Cheng Lai,et al. Controlling chaos , 1994 .
[2] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[3] G. Duffing,et al. Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung , 1918 .
[4] Ercan Solak,et al. Partial identification of Lorenz system and its application to key space reduction of chaotic cryptosystems , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.
[5] L. Chua,et al. The double scroll family , 1986 .
[6] Y. Zhang,et al. Adaptive Output Control of a Class of Time-Varying Uncertain Nonlinear Systems , 2005 .
[7] Leon O. Chua,et al. ON ADAPTIVE SYNCHRONIZATION AND CONTROL OF NONLINEAR DYNAMICAL SYSTEMS , 1996 .
[8] H. Nijmeijer,et al. On Lyapunov control of the Duffing equation , 1995 .
[9] M. Bernardo. An adaptive approach to the control and synchronization of continuous-time chaotic systems , 1996 .
[10] Keiji Konishi,et al. Stability of extended delayed-feedback control for discrete-time chaotic systems , 1999 .
[11] L. O. Chua,et al. The double scroll family. I: Rigorous of chaos. II: Rigorous analysis of bifurcation phenomena , 1986 .
[12] Jinhu Lu,et al. Adaptive synchronization of uncertain Rossler hyperchaotic system based on parameter identification , 2004 .
[13] Miroslav Krstic,et al. Nonlinear and adaptive control de-sign , 1995 .
[14] Thomas Kailath,et al. Linear Systems , 1980 .
[15] Guanrong Chen,et al. Secure synchronization of a class of chaotic systems from a nonlinear observer approach , 2005, IEEE Transactions on Automatic Control.
[16] Zhong-Ping Jiang,et al. Global output feedback tracking for nonlinear systems in generalized output-feedback canonical form , 2002, IEEE Trans. Autom. Control..
[17] Guanrong Chen,et al. Adaptive Control of the Uncertain Duffing Oscillator , 1997 .
[18] R. FitzHugh. Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.
[19] Guo-Ping Jiang,et al. Stabilizing unstable equilibria of chaotic systems from a State observer approach , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.
[20] Ming-Jyi Jang,et al. Sliding Mode Control of Chaos in the cubic Chua's Circuit System , 2002, Int. J. Bifurc. Chaos.
[21] Chun-Mei Yang,et al. A Detailed Study of Adaptive Control of Chaotic Systems with Unknown Parameters , 1998 .
[22] Hendrik Richter,et al. Local Control of Chaotic Systems — A Lyapunov Approach , 1998 .
[23] Hamel. Georg Duffing, Ingenieur: Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung. Sammlung Vieweg. Heft 41/42, Braunschweig 1918. VI+134 S , 1921 .
[24] Henk Nijmeijer,et al. An observer looks at synchronization , 1997 .
[25] Shuzhi Sam Ge,et al. Adaptive backstepping Control of a Class of Chaotic Systems , 2000, Int. J. Bifurc. Chaos.
[26] B. Ravindra,et al. A General Approach in the Design of Active controllers for nonlinear Systems exhibiting Chaos , 2000, Int. J. Bifurc. Chaos.
[27] Haipeng Peng,et al. Time-Delayed Feedback Control of Time-Delay Chaotic Systems , 2003, Int. J. Bifurc. Chaos.
[28] O. Rössler. An equation for continuous chaos , 1976 .
[29] Keiji Konishi,et al. Sliding mode control for a class of chaotic systems , 1998 .
[30] Ying Zhang,et al. Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis , 2004, IEEE Trans. Autom. Control..
[31] Xinghuo Yu. Controlling Lorenz chaos , 1996, Int. J. Syst. Sci..
[32] Guanrong Chen,et al. On time-delayed feedback control of chaotic systems , 1999 .
[33] Ying Zhang,et al. Adaptive backstepping control design for systems with unknown high-frequency gain , 2000, IEEE Trans. Autom. Control..