Entangled Photon Pair Generation Using Silicon Wire Waveguides

Entangled photon pair generation is an important technology for realizing quantum information systems. Among various entangled photon pair sources, a source based on spontaneous four-wave mixing (SFWM) in a silicon wire waveguide (SWW) is now drawing attention. Thanks to the very large third-order nonlinearity in an SWW, we can realize highly efficient SFWM in a short ( ~ 1 cm) waveguide, which will possibly lead to an integrated entanglement source on a silicon chip. In this paper, we review recent progress on SWW-based entanglement sources. This study reviews the basic theory of SFWM, and then describes correlated and entangled photon generation experiments using SWWs and applications to quantum information experiments.

[1]  C. M. Natarajan,et al.  Quantum interference in silicon waveguide circuits , 2011, 8th IEEE International Conference on Group IV Photonics.

[2]  Masaya Notomi,et al.  Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide. , 2011, Optics express.

[3]  T. Krauss,et al.  Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide. , 2011, Optics letters.

[4]  Alexander V. Sergienko,et al.  High Speed Travelling Wave Single-Photon Detectors With Near-Unity Quantum Efficiency , 2011 .

[5]  Hiroshi Fukuda,et al.  Indistinguishable photon pair generation using two independent silicon wire waveguides , 2011 .

[6]  Jun Chen,et al.  Frequency-bin entangled comb of photon pairs from a Silicon-on-Insulator micro-resonator. , 2011, Optics express.

[7]  S. Massar,et al.  Generation of correlated photons in hydrogenated amorphous-silicon waveguides , 2011, 1102.1030.

[8]  Hiroshi Fukuda,et al.  Long-distance entanglement-based quantum key distribution experiment using practical detectors. , 2010, Optics express.

[9]  H. Tsuchida,et al.  Hong-Ou-Mandel dip measurements of polarization-entangled photon pairs at 1550 nm. , 2010, Optics express.

[10]  O. Alibart,et al.  High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources , 2009, 0912.5312.

[11]  Hiroki Takesue,et al.  Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes , 2009, 0907.4535.

[12]  S. Massar,et al.  Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. , 2009, Optics express.

[13]  H. Takesue,et al.  Entanglement swapping using telecom-band photons generated in fibers. , 2009, Optics express.

[14]  Hiroshi Fukuda,et al.  Generation of high-purity entangled photon pairs using silicon wire waveguide. , 2008, Optics express.

[15]  T Honjo,et al.  Long-distance entanglement-based quantum key distribution over optical fiber. , 2008, Optics express.

[16]  Sae Woo Nam,et al.  High-efficiency, ultra low-noise all-fiber photon-pair source. , 2008, Optics express.

[17]  Hiroshi Fukuda,et al.  Generation of polarization entangled photon pairs using silicon wire waveguide. , 2008, Optics express.

[18]  T. Tsuchizawa,et al.  Silicon photonic circuit with polarization diversity. , 2008, Optics express.

[19]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[20]  M. Lipson,et al.  Telecom-Band Entanglement Generation for Chipscale Quantum Processing , 2008, 0801.2606.

[21]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[22]  Hiroki Takesue,et al.  Entanglement generation using silicon wire waveguide , 2007, 2011 IEEE Photonics Society Summer Topical Meeting Series.

[23]  A. W. Sharpe,et al.  High speed single photon detection in the near-infrared , 2007, 0707.4307.

[24]  H. Takesue 1.5μm band Hong-Ou-Mandel experiment using photon pairs generated in two independent dispersion shifted fibers , 2007 .

[25]  V. Scarani,et al.  Entangling independent photons by time measurement , 2007, 0704.0758.

[26]  Fatih Yaman,et al.  Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization , 2007 .

[27]  M. Lipson,et al.  Generation of correlated photons in nanoscale silicon waveguides. , 2006, Optics express.

[28]  N. Namekata,et al.  800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating. , 2006, Optics express.

[29]  Govind P. Agrawal,et al.  Correlated Photon Pairs Using Silicon Waveguides , 2006 .

[30]  Kyo Inoue,et al.  1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber. , 2005, Optics express.

[31]  H. Takesue,et al.  Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers , 2005, quant-ph/0508215.

[32]  T. Tsuchizawa,et al.  Four-wave mixing in silicon wire waveguides. , 2005, Optics express.

[33]  T. Shoji,et al.  Microphotonics devices based on silicon microfabrication technology , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[34]  Kyo Inoue,et al.  Generation of pulsed polarization-entangled photon pairs in a 1.55-microm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit. , 2005, Optics letters.

[35]  T. Honjo,et al.  Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer. , 2004, Optics letters.

[36]  H. Takesue,et al.  Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop , 2004, quant-ph/0408032.

[37]  Jun-ichi Takahashi,et al.  Microphotonics Devices Based on Silicon Wire Waveguiding System (INVITED) , 2004 .

[38]  Paul L Voss,et al.  Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. , 2004, Physical review letters.

[39]  V. Scarani,et al.  Two independent photon pairs versus four-photon entangled states in parametric down conversion , 2003, quant-ph/0310167.

[40]  Akio Yoshizawa,et al.  Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides , 2003 .

[41]  T. Tsuchizawa,et al.  Low loss mode size converter from 0.3 /spl mu/m square Si wire waveguides to singlemode fibres , 2002 .

[42]  Bahram Jalali,et al.  Observation of Raman emission in silicon waveguides at 1.54 microm. , 2002, Optics express.

[43]  Steven G. Johnson,et al.  Photonic-crystal slow-light enhancement of nonlinear phase sensitivity , 2002 .

[44]  P. Kumar,et al.  All-fiber photon-pair source for quantum communications , 2002, IEEE Photonics Technology Letters.

[45]  N. Gisin,et al.  PPLN waveguide for quantum communication , 2001, quant-ph/0107125.

[46]  Gisin,et al.  Quantum cryptography using entangled photons in energy-time bell states , 1999, Physical review letters.

[47]  N. Gisin,et al.  Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication , 1998, quant-ph/9809034.

[48]  J. Rarity,et al.  Photon statistics of pulsed parametric light , 1998 .

[49]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[50]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[51]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[52]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[53]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[54]  H. Takesue,et al.  Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[55]  Hiroki Takesuea 1.5 μm band Hong-Ou-Mandel experiment using photon pairs generated in two independent dispersion shifted fibers , 2007 .

[56]  Christopher Edward Kuklewicz,et al.  Ultrabright source of polarization-entangled photons from cavity-enhanced downconversion , 2005 .